力扣第十题——正则表达式匹配(动态规划化的运用)(附思路讲解、完整代码及知识点精炼)

题目介绍

给你一个字符串 s 和一个字符规律 p,请你来实现一个支持 '.' 和 '*' 的正则表达式匹配。

  • '.' 匹配任意单个字符
  • '*' 匹配零个或多个前面的那一个元素

所谓匹配,是要涵盖 整个 字符串 s的,而不是部分字符串。

 

示例 1:

输入:s = "aa", p = "a"
输出:false
解释:"a" 无法匹配 "aa" 整个字符串。

示例 2:

输入:s = "aa", p = "a*"
输出:true
解释:因为 '*' 代表可以匹配零个或多个前面的那一个元素, 在这里前面的元素就是 'a'。因此,字符串 "aa" 可被视为 'a' 重复了一次。

示例 3:

输入:s = "ab", p = ".*"
输出:true
解释:".*" 表示可匹配零个或多个('*')任意字符('.')。

提示:

  • 1 <= s.length <= 20
  • 1 <= p.length <= 20
  • s 只包含从 a-z 的小写字母。
  • p 只包含从 a-z 的小写字母,以及字符 . 和 *
  • 保证每次出现字符 * 时,前面都匹配到有效的字符

完整代码

class Solution {
    public boolean isMatch(String s, String p) {
        int m = s.length();
        int n = p.length();

        boolean[][] f = new boolean[m + 1][n + 1];
        f[0][0] = true;
        for (int i = 0; i <= m; ++i) {
            for (int j = 1; j <= n; ++j) {
                if (p.charAt(j - 1) == '*') {
                    f[i][j] = f[i][j - 2];
                    if (matches(s, p, i, j - 1)) {
                        f[i][j] = f[i][j] || f[i - 1][j];
                    }
                } else {
                    if (matches(s, p, i, j)) {
                        f[i][j] = f[i - 1][j - 1];
                    }
                }
            }
        }
        return f[m][n];
    }

    public boolean matches(String s, String p, int i, int j) {
        if (i == 0) {
            return false;
        }
        if (p.charAt(j - 1) == '.') {
            return true;
        }
        return s.charAt(i - 1) == p.charAt(j - 1);
    }
}

 思路详解

isMatch方法
  1. 初始化变量

    • mn分别表示字符串s和模式字符串p的长度。
    • f是一个二维布尔数组,用于存储子问题的解。f[i][j]表示s的前i个字符和p的前j个字符是否匹配。
  2. 初始化边界条件

    • f[0][0] = true,表示空字符串与空模式是匹配的。
  3. 动态规划填表

    • 外层循环遍历字符串s的每个字符,内层循环遍历模式字符串p的每个字符。
    • 如果模式字符串的当前字符是'*'
      • f[i][j] = f[i][j - 2],表示将'*'及其前面的字符视为不存在。
      • 如果当前字符匹配(即s的第i个字符与p的第j-1个字符匹配,或p的第j-1个字符为.),则f[i][j] = f[i][j] || f[i - 1][j],表示可以将'*'匹配多个字符。
    • 如果模式字符串的当前字符不是'*'
      • 如果当前字符匹配,则f[i][j] = f[i - 1][j - 1],表示当前字符匹配成功,继续判断前面的字符。
  4. 返回结果

    • f[m][n]表示整个字符串s与模式字符串p是否匹配。
matches方法
  • 判断字符串s的第i个字符是否与模式字符串p的第j个字符匹配。
  • 如果i为0,表示s为空,直接返回false
  • 如果p的第j个字符为.,表示可以匹配任意字符,返回true
  • 如果s的第i个字符与p的第j个字符相同,返回true,否则返回false

知识点精炼

动态规划知识点精炼

1. 定义

动态规划(Dynamic Programming,简称DP)是一种在数学、管理科学、计算机科学等领域广泛使用的优化方法。它将复杂问题分解为多个子问题,通过求解子问题的最优解,进而得到原问题的最优解。

2. 核心思想
  • 最优子结构:问题的最优解包含其子问题的最优解。
  • 子问题重叠:在解决原问题的过程中,多个子问题会重复出现。
  • 无后效性:子问题的解一旦确定,就不会再改变。
3. 动态规划步骤
  1. 确定状态:定义子问题,并用一个或多个变量表示子问题的状态。
  2. 确定状态转移方程:找出子问题之间的关系,建立状态转移方程。
  3. 确定边界条件:明确初始状态和递归终止条件。
  4. 计算最优解:根据状态转移方程和边界条件,自底向上或自顶向下计算最优解。
4. 动态规划分类
  • 自顶向下(Top-Down):从原问题出发,递归地解决子问题,并通过记忆化存储已解决的子问题。
  • 自底向上(Bottom-Up):从边界条件出发,迭代地计算子问题的最优解,直至得到原问题的最优解。
5. 动态规划应用场景
  • 最短路径问题
  • 最长公共子序列
  • 背包问题
  • 编辑距离
  • 最大子段和
  • 矩阵连乘
  • ……
6. 动态规划优化技巧
  • 空间优化:使用一维数组代替二维数组,降低空间复杂度。
  • 记忆化搜索:避免重复计算子问题,提高时间效率。
  • 四边形不等式:用于证明状态转移方程的正确性,以及优化动态规划算法。
7. 动态规划与分治算法的区别
  • 动态规划在求解子问题时,会存储子问题的解,避免重复计算。
  • 分治算法在求解子问题时,不会存储子问题的解,可能导致大量重复计算。

 

### LeetCode 第 10 正则表达式匹配目要求给定输入字符串 `s` 和模式 `p` 实现支持 `'.'` 和 `'*'` 的正则表达式匹配[^4]。字符 `'.'` 可以匹配任意单个字符,而字符 `'*'` 则可以匹配零个或多个前面的元素。 #### 动态规划解法概述 为了高效解决这个问,采用动态规划方法是一个常见策略。创建二维布尔数组 `dp[i][j]` 表示子串 `s[0...i)` 是否能被模式 `p[0...j)` 所匹配。初始条件如下: - 当两个序列都为空时,显然它们是可以互相匹配的; - 如果仅模式为空,则无法匹配任何非空字符串;反之亦然。 对于每一个位置 `(i,j)` 来说,状态转移方程取决于当前处理的是普通字符还是特殊符号: - 若当前位置不是星号 (`*`) ,那么只要前一位相同或者为点(`.`),就可以继承上一格的状态。 ```cpp if (p[j - 1] == s[i - 1] || p[j - 1] == '.') { dp[i][j] = dp[i - 1][j - 1]; } ``` - 对于星号情况更为复杂一些,因为其可能代表重复零次到多次之前的字符。因此有两种可能性: - 星号表示忽略掉它以及之前的一个字符(即不使用这个通配符),此时只需看去掉这两个字符后的模式能否继续匹配原字符串即可; - 或者利用该通配符来扩展已有的部分匹配关系,在这种情况下需要确认最后一个实际参与比较的有效字符确实相等或者是`.`通用字符,并且查看去除当前待检验字符之后的部分是否已经能够成功匹配。 ```cpp else if(p[j-1]=='*'){ dp[i][j]=dp[i][j-2]; // 不考虑 * 前面的那个字符 if(s[i-1]==p[j-2]||p[j-2]=='.')// 考虑 * 前面那个字符的情况 dp[i][j]|=dp[i-1][j];// 使用 * } ``` 最终返回整个表格右下角的结果作为答案。 下面是完整的 C++ 解决方案代码实现: ```cpp class Solution { public: bool isMatch(string s, string p) { int m=s.size(), n=p.size(); vector<vector<bool>> dp(m+1,vector<bool>(n+1,false)); dp[0][0]=true; for(int j=2;j<=n;++j){ dp[0][j]=(p[j-1]=='*' && dp[0][j-2]); } for(int i=1;i<=m;++i){ for(int j=1;j<=n;++j){ if(j>1&&p[j-1]=='*'){ dp[i][j]=dp[i][j-2]||(dp[i-1][j]&&(s[i-1]==p[j-2]||p[j-2]=='.')); } else{ dp[i][j]=dp[i-1][j-1]&&(s[i-1]==p[j-1]||p[j-1]=='.'); } } } return dp[m][n]; } }; ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值