在 CES 2025 展会上,AMD 悄悄亮相了其全新 AI/HPC 加速器——Instinct MI325X。这款 GPU 不仅拥有 256 GB 的 HBM3E 显存(带宽高达 6 TB/s),还是目前业界唯一配备如此大容量板载高速缓存的 GPU。相比之下,NVIDIA 的 H200“仅”提供 141 GB HBM3E 和 4.8 TB/s 带宽,看上去 AMD 在显存配置上已先拔头筹。
然而,回顾 AMD 早先对 MI325X “288 GB 显存”的预告,如今却只剩下 256 GB,颇有几分“临时减配”的意味。究竟是什么原因让 AMD 在最后时刻修改规格?这份“小遗憾”是否暗示着技术或供应链方面的掣肘?外界众说纷纭。
1. 拥有更大显存一定“更强”吗?
从理论上讲,拥有更多板载显存的加速器可以更好地支持大型模型训练与推理,减少模型切分带来的通信开销,在大批量处理数据时也可能更快。但在实际应用中,显存容量只是影响性能的众多因素之一。**例如,NVIDIA H200 尽管显存量看似劣势,却在 Llama2 70B 模型推理基准中比 AMD MI300X(192GB)高出 30% 以上的令牌生成速度。软件优化与模型架构等因素也至关重要。
2. MI325X 与 MI300X 的“尴尬之处”
AMD 此前的 MI300X 在硬件参数上相当亮眼,可在 MLPerf 基准测试中,其表现并未完全兑现纸面优势,部分原因正是软件栈和生态相对不成熟。MI325X 和 MI300X 同为双小芯片 GPU,虽说配备了更大显存,但如果软件优化不足,未必能彻底释放潜能。
3. AMD 真能撼动 NVIDIA 的地位吗?
在企业级 GPU 加速器的高端战场,NVIDIA 凭借成熟的 CUDA 生态和完善的 AI 软件堆栈,多年来稳坐头把交椅。即使 AMD 再度升级硬件配置,也尚需解决软件层面落后的“老问题”。在多项实际测试中,AMD 如果无法展示显著领先于 NVIDIA 的训练/推理效率,又如何证明 “更多显存” 可以带来真正的性能超越?
4. 你会更看好谁?
· 技术控:对原生显存容量和带宽极度敏感,认为 “硬件即正义”,看好 AMD MI325X 的潜力,寄希望于日后驱动与软件栈逐步完善。
· 稳健派:相信 NVIDIA 长期沉淀的 CUDA 生态和软件优化能力,即使一时在显存硬规格上不占优势,依旧能在“实战”中笑到最后。
· 观望党:认为目前双方都不完美,NVIDIA 市场占有率高但代价昂贵,AMD 虽有价格/容量优势却“软实力”稍欠缺,更想等一等再做决定。
究竟谁能在 AI 和 HPC 领域笑到最后?Instinct MI325X 会不会像 MI300X 一样在硬件层面风光,却因软件优化不足而错失良机?欢迎在评论区发表你的看法,也可以(见我的简介),跟发烧友一起讨论,让我们持续追踪 AMD 与 NVIDIA 的新动向,见证这场 HPC 与 AI 霸主之争的下一幕!