- 博客(2071)
- 收藏
- 关注
原创 AI大模型学习路线(2026最新)收藏这一篇就够了!_AI大模型学习路线
大模型学习路线:首先打好数学基础,包括线性代数(矩阵、向量等)、微积分(导数、积分)和概率统计(概率分布、贝叶斯定理)。推荐Khan Academy和MIT的公开课程。同时掌握Python编程及PyTorch/TensorFlow框架,为后续机器学习与深度学习学习奠定基础。
2025-12-06 18:00:41
1180
原创 大模型时代AI产品岗招聘火爆:零基础小白如何1-2个月快速上岸?2026年从被裁员到涨薪转行到AI圈,我是怎么做到的?
【摘要】AI产品岗位招聘持续火爆,12月是转行最佳启动点,可避开3月求职高峰。2026年AI高薪岗位TOP4包括:AI产品经理(20-50K)、解决方案工程师(15-40K)、AIGC运营(10-30K)等。课程专为土建等背景人士设计,通过2-4个月系统学习+实战项目,帮助学员快速转行。已有多位学员成功斩获腾讯、阿里、百度等大厂offer,涵盖校招/社招、不同学历及年龄层。课程资源包含大模型学习路线、100+商业方案、200本专业书籍等完整学习体系。
2026-02-03 22:32:31
566
原创 小白/程序员如何成功转型大模型行业?全方位指南与岗位解析
本文探讨了进入AI行业的路径选择,针对不同背景人群提出建议:非技术背景者可考虑AI产品、运营、分析等岗位;刚毕业学生可根据风险偏好选择杭州(新兴AI企业)或清华(学术氛围);转行需培养AI理解能力和项目思维,建议先工作再读研以明确方向;强调项目经验是求职必选项,而非加分项。互联网大厂非AI转型最佳选择,因核心业务基因差异。
2026-02-03 22:30:43
87
原创 大模型应用开发工程师:零基础入门,30+也能年薪60万!
摘要:AI大模型应用开发工程师成为高薪新赛道,入门薪资25-35k/月,资深可达50k/月。该岗位侧重模型应用而非底层研发,零基础通过系统学习即可胜任。行业人才缺口大,企业更看重实操能力而非科班背景,当前是入局AI实现职业跃迁的黄金期。
2026-02-03 22:29:31
153
原创 基于大模型的智能知识库系统:RAG技术加持,零代码也能搭建企业级知识管理平台
这是一款融合RAG技术与知识图谱的智能知识库系统,提供智能问答和知识管理服务。技术栈轻量化,支持多格式文档解析,提供知识图谱可视化和三级权限管理。完全免费且支持二次开发,采用Docker Compose一键部署,适合个人和企业使用,大大降低了知识管理的技术门槛。
2026-02-03 22:28:27
114
原创 38岁程序员抓住风口,转行AI大模型,实现收入暴涨10倍,彻底挽救职业生涯?_38岁java程序员能转ai大模型吗?
【摘要】当前AI大模型成为技术风口,各大企业急招相关人才。本文介绍大模型概念——具有海量参数的深度神经网络,能处理复杂任务并给出智能回答。适合AI小白、转行者、进阶学习者和创业者阅读。文章提供从零基础到进阶的系统学习路线,包括模型设计、提示词工程、平台开发等7个阶段,并附赠104G学习资源包(含视频教程、书籍、面试题等)。掌握大模型技能可提升全栈工程能力,应对实际项目需求,完成垂直领域模型训练,是程序员转型的重要机遇。
2026-02-02 23:27:02
737
原创 为什么2026年是大模型产品经理的黄金元年?(附7阶段学习路线+免费资源包)
摘要:文章指出企业不应过度关注大模型迭代,而应重视构建AI执行层。DeepSeek-R1作为"认知大脑"需与实在Agent等"执行躯体"协同,通过API实现从规划到执行的完整闭环。这种"大脑+躯体"系统能自动化80%重复工作,提供执行验证和数据安全机制,使AI深度融入企业运营。作者强调AI应用的关键在于系统协同,而非单一模型能力,建议企业利用现有技术构建完整的AI业务系统。
2026-02-02 23:25:24
414
原创 DeepSeek-R1与实在Agent:企业AI落地的“大脑+躯体“协同新范式
摘要:文章指出企业不应过度关注大模型迭代,而应重视构建AI执行层。DeepSeek-R1作为"认知大脑"需与实在Agent等"执行躯体"协同,通过API实现从规划到执行的完整闭环。这种"大脑+躯体"系统能自动化80%重复工作,提供执行验证和数据安全机制,使AI深度融入企业运营。作者强调AI应用的关键在于系统协同,而非单一模型能力,建议企业利用现有技术构建完整的AI业务系统。
2026-02-02 23:23:12
354
原创 为什么大模型公司疯狂招聘GPU Kernel工程师?CUDA技能仍不可替代
大模型时代GPU Kernel工程师的不可替代性分析 摘要: 文章探讨了在大模型时代GPU Kernel工程师的独特价值。尽管自动化工具不断发展,但仍无法完全替代手写Kernel的需求,主要原因包括:1)业务场景的多样性和极致性能需求,如超长序列Attention、MoE结构等需要定制化算子优化;2)硬件生态碎片化,不同芯片架构需要专属Kernel适配;3)低精度计算等特殊场景的精度把控需求。CUDA技能已成为AI就业市场的基本功,但还需结合特定项目经验和模型部署能力。芯片公司对此类人才需求旺盛,就业前景广
2026-02-02 23:22:19
398
原创 AI系统集质的革命性突破:MCP与A2A双协议详解,让大模型开发标准化、可插拔、易治理(建议收藏)
MCP与A2A协议共同构建AI应用的"操作系统层"规范,分别解决AI与工具/数据的标准化连接及智能体间的协作问题。MCP实现企业资源的安全可控调用,A2A支持智能体跨平台协作。二者协同形成"对外协作标准化、对内能力治理标准化"的架构,推动AI从单点应用向规模化落地转变。协议采用分层设计,强调安全治理和现有系统兼容性,提供开源工具支持,有效解决工具调用零散、数据割裂、多智能体协作等行业痛点,是AI企业级应用的关键基础设施。
2026-02-02 23:21:31
473
原创 小白也能懂:VLLM社区推测解码技术加速LLM推理详解
推测解码是一种无损加速大语言模型推理的技术,通过小模型预先推测多个token,大模型并行验证的方式实现2-2.7倍加速。该技术适用于低并发、长回复、延迟敏感且GPU有空闲的场景,能显著提升推理效率。但不适合高QPS、短回复或GPU已饱和的环境。使用时需根据具体场景特征判断,确保获得最佳性能提升。技术原理包含token推测、并行验证和拒绝采样三个步骤,在保持输出质量的前提下实现高效加速。
2026-02-02 23:20:32
433
原创 28岁转行AI大模型,我的真实经历与面试经验分享_28岁转行AI大模型,刚好赶上风口!
30岁成功转型AI大模型:从零基础到算法工程师的逆袭之路 一位传统行业从业者分享了自己28岁成功转型AI大模型领域的经历。通过系统学习Python、机器学习基础及Transformer架构,参与开源项目和Kaggle竞赛,最终获得AI算法工程师offer,薪资提升50%。文章强调AI领域更看重能力而非背景,30岁转行完全可行,并提供了详细的学习路径(3个月基础+半年专攻)、项目实践经验和面试技巧。作者鼓励抓住AI风口,通过持续学习和实战积累实现职业突破,同时分享了免费学习资源帮助入门者系统掌握大模型技术。
2026-01-31 16:04:39
688
原创 揭秘Kimi与阿里云如何打造支撑数万并发的Agent基础设施体系
Kimi与阿里云合作构建的Agent Infra基础设施体系,基于ACK和ACS Agent Sandbox解决了AI Agent面临的三大核心挑战:秒级启动数千沙箱实现弹性响应、实例休眠唤醒保障状态连续性、十万级Pod调度支撑大规模并发。该方案通过节点池即时弹性、轻量级虚拟机技术、资源分级调度等创新,显著降低了系统延迟和成本,成功支撑了Kimi"深度研究"等多款Agent产品的高峰期服务需求,并为模型训练提供了海量隔离算力。这一基础设施为AI Agent的规模化落地提供了高性能、低成本
2026-01-31 16:03:19
481
原创 大模型推理框架完全指南:CoT、ReAct、ToT原理与实践
大模型推理的三大核心框架解析:CoT(思维链)采用线性单链推理,适合简单问题,成本低但无纠错能力;ReAct(推理+行动)通过闭环交互支持工具调用,是AI Agent的主流框架;ToT(思维树)通过多分支探索实现高阶推理,适合复杂问题但成本高。三者从简单到复杂形成推理能力进阶体系,开发者需根据任务复杂度、交互需求和计算成本进行选择。
2026-01-31 16:02:02
580
原创 AI产品经理高薪指南:从25K到100K,零基础也能入行大厂
AI产品经理是当前热门高薪岗位,市场需求旺盛,薪资达25-100万/年。90%岗位为应用型产品经理,不需严格技术背景,零基础也可转型。文章分析了不同背景人士的转型策略和路径,并推荐了陪跑实战营课程帮助系统提升产品能力,实现职业转型和薪资提升。
2026-01-31 16:01:12
566
原创 一文读懂AGI、AIGC与智能体:AI技术的三大核心概念
本文系统介绍了人工智能三大核心概念:智能体(Agent)作为能自主感知、决策和行动的"实干家";AIGC(人工智能生成内容)作为高效创作文字、图像等内容的"创意大师";AGI(通用人工智能)作为具备人类般全面智能的终极目标。三者分别从行动执行、内容创作和全局智能角度推动AI发展,构成人工智能技术的重要维度。文章通过比喻说明三者的区别与联系:AGI是"全能老板",AIGC是"创意厨师",Agent则是"执行服务员&quo
2026-01-31 15:59:57
541
原创 3年后端老兵亲述大模型转型血泪史:后端开发转行大模型应用开发(附完整大模型学习路线)
本文探讨了传统后端开发者如何转型为大模型工程师。作者通过薪资对比揭示了AI领域的薪资优势,指出后端开发者在分布式系统、工程化能力和架构思维方面的独特优势可快速迁移至大模型领域。文章提供了120天转型路线图,包括Python基础、PyTorch实战和模型服务化等关键阶段,并强调应避免过度沉迷数学推导和论文阅读。最后给出面试策略建议,帮助开发者将后端经验转化为大模型岗位的竞争优势。
2026-01-30 21:53:10
648
原创 医疗大模型八大应用场景深度解析:“医疗大模型”八大应用场景
AI医疗大模型八大应用场景解析 本文聚焦"AI+医疗"赛道,基于智药局研究报告,详解医疗大模型的八大核心应用场景。作为AI工坊双周主题#02的首篇内容,文章提供完整报告领取方式(公众号回复"AI医疗报告"),并开启下期选题征集(AI+硬件/ToB/教育等)。读者可通过留言参与主题投票,最高赞问题将作为下期选题。 (全文98字,包含核心要素:主题背景、内容来源、互动机制和价值主张)
2026-01-30 21:50:09
456
原创 AI如何重塑公文处理:从智能写作到决策支持的全面解析
AI赋能智慧公文系统:核心应用与发展趋势 摘要:本文探讨AI技术在智慧公文系统中的三大核心应用场景:智能写作与审校可提升起草效率58%并确保合规性,流程协同实现跨部门高效流转,决策辅助激活政务数据价值。同时指出智慧公文将向全生命周期AI覆盖、安全定制化、生态协同方向发展,为政务数字化转型提供技术支撑。随着AI与政务场景深度融合,智慧公文系统正成为提升政务效率、优化服务质量的关键抓手。
2026-01-30 21:49:04
602
原创 8大AI场景+工具详解,从PPT到编程全方位提升工作效率(大模型入门指南)
AI重塑未来职场:8大场景提升效率 埃隆·马斯克预测,AI将在2029年超越人类智慧,全球9200万岗位或被取代,同时创造1.7亿新岗位。职场人需主动拥抱AI技术,掌握工具可提升40%工作效率。本文推荐8大AI应用场景: PPT制作:AiPPT、Gamma快速生成专业演示文稿; 会议纪要:通义听悟、讯飞听见自动转写并结构化内容; 图片生成:Midjourney、即梦AI通过文字描述创作高质量图像; 编程辅助:Cursor、通义灵码实现自然语言转代码; 短视频创作:剪映、可灵AI一键生成带特效的成片; 表格处
2026-01-30 21:48:11
569
原创 M³KG-RAG必学:多模态知识图谱增强RAG,解决“听得懂看得见“的收藏级技术方案
M³KG-RAG创新解决多模态RAG两大核心问题:提出多智能体协作构建多跳多模态知识图谱(M³KG),结合模态感知检索与GRASP精剪枝技术,实现精准的多模态问答。该系统在音频、视频及混合任务上全面超越现有方法,最高提升9.5分,为多模态大模型应用提供了"知识构建-检索对齐-答案生成"的完整解决方案。实验证明其答案更具体、忠实且幻觉更少,即将开源代码与数据。
2026-01-30 21:46:58
620
原创 2026年AI大模型产品经理成长秘籍:从零基础到进阶,大模型产品经理学习路线,非常详细建议收藏
AI产品经理的核心在于具备AI思维,其产品设计追求前端简单但后端复杂的智能系统。人工智能发展依赖产业链协同:基础层提供算力硬件(如AI芯片),技术层研发算法模型,应用层实现场景落地。产业链分为基础层(计算设施)、技术层(算法平台)和应用层(行业产品),各环节共同推动AI技术进步与应用创新。
2026-01-29 20:41:43
666
原创 零门槛定制专属大模型:像打开浏览器一样简单,小白也能学会的微调全攻略
文章介绍了LLaMA-Factory Online平台如何简化大模型微调过程,使定制专属模型变得像打开浏览器一样简单。针对用户常问的6个微调参数问题进行详细解答,包括参数调整、继续微调、加速配置、任务恢复等。平台降低了微调门槛,无需复杂环境配置和高昂GPU算力成本,新用户可免费使用高性能GPU算力微调6.5小时,帮助开发者和团队轻松定制专业领域的大模型。
2026-01-29 20:37:46
459
原创 一文读懂AI模型家族架构:从感知到执行的智能流水线
文章揭示了AI模型家族是一条"感知→语言→概念→决策→执行"的智能流水线,而非单一模型。详细解析了LLM(语言层)、LCM(概念层)和LAM(行动层)三大认知维度,以及MoE、SLM、VLM、MLM、SAM等辅助模型在工程架构中的角色与映射关系,强调了模块化设计对构建可靠AI系统的重要性。
2026-01-29 20:36:40
560
原创 2026年AI产品经理分类与前景深度分析:找到最适合你的方向(建议收藏)
本文详解AI产品经理四大技术栈分类(模型层、平台层、应用型、AI硬件)的工作职责与技能要求,提供不同方向的薪资对比数据。从背景优势、兴趣倾向和行业前景三维度给出方向选择建议,预测生成式AI、行业解决方案和AI伦理管理为未来发展热点。无论技术背景还是业务背景,读者均可找到适合的转型路径,持续学习AI技术与业务知识是成功关键。
2026-01-29 20:35:30
516
原创 大模型领域高级岗位招聘要求全解析,程序员从入门到精通指南
本文汇总了多个大模型相关高级技术与管理岗位的招聘要求,包括产业互联网CTO/COO、首席AI架构师、法律AI技术总监等。这些岗位普遍要求应聘者具备大模型训练、推理、优化和部署的专业知识,以及团队管理和业务协同能力。文章详细列出各岗位职责、任职资格和关键技能要求,为大模型领域求职者提供全面参考。
2026-01-29 20:34:06
567
原创 程序员必看:30岁转行AI大模型,90天从入门到实战,附学习资源包【收藏】
30岁成功转行AI大模型领域:从传统行业到算法工程师的蜕变之路。作者通过自学Python、机器学习基础及Transformer架构,参与开源项目和Kaggle竞赛积累实战经验,最终实现薪资50%的增长。文章指出AI大模型领域人才需求激增、薪资领先的现状,建议技术人员将现有技术与AI结合,并免费分享包含视频教程、学习路线、电子书籍和面试题库的104G大模型学习资源包。强调年龄不是限制,快速学习和项目实践才是转型关键,鼓励读者抓住AI风口实现职业突破。
2026-01-27 16:35:00
1385
原创 MLLM Token压缩技术研究综述:解决大模型高计算成本的实用指南
多模态大模型面临高分辨率图像和长视频带来的计算挑战,Token压缩技术成为关键解决方案。本文系统分类了Vision Encoder、Projector和LLM模块中的压缩策略,并探讨了多模块协同压缩方法。针对不同应用场景,研究提供了压缩策略选择指南,包括视频时空压缩、Token合并与丢弃的适用性等。同时分析了即插即用与重训练方法的优劣,以及加速训练与推理的权衡。文章还指出了当前挑战和未来研究方向,为MLLM的高效部署提供了实用参考。
2026-01-27 16:33:58
805
原创 大模型入门必读:AI产品经理三大分类及核心能力(建议收藏学习)
AI产品经理分类与职业发展指南 本文系统梳理了AI产品经理的三大方向:AI应用产品(面向C/B端用户)、AI大模型产品(研发核心模型)和AI平台化B端产品(提供技术服务)。从核心定位、代表产品、关键能力、目标用户等7个维度详细对比了各类岗位特点: AI应用产品:聚焦功能封装与用户体验,如智能写作/客服工具 AI大模型产品:专注模型研发与优化,服务开发者生态 AI平台化产品:提供企业级AI解决方案,降低开发门槛 文章为从业者提供了清晰的职业路径分析,包括各领域所需的核心能力和入行建议,特别强调技术理解力、场景
2026-01-27 16:33:04
582
原创 【程序员必看】GLM-4.6V图文混排原理解析与复刻实践:收藏级多模态Agent实战教程
GLM-4.6V多模态模型在PDF论文解析方面展现突破性能力,能精准识别图片位置(千分位坐标),批量处理大量图片并持续优化排版。该模型通过工具调用实现智能体式的"观察-行动"机制,为AI智能体开发提供新范式。文章作者通过逆向工程复现了该功能,发现模型具有三项核心优势:精确的视觉定位能力、超长上下文处理(支持128k输入)以及基于裁剪结果的迭代优化能力。这些特性使GLM-4.6V成为原生智能体,大幅简化了传统图文混排的复杂流程。
2026-01-27 16:32:08
696
原创 AI大模型时代的5大黄金岗位,年轻人的职业规划指南_适合年轻人就业新型岗位大盘点
AI大模型时代催生高薪就业机遇,2024年产业规模突破7000亿元,人才缺口超500万。核心岗位包括算法工程师、数据科学家等,其中自动驾驶、AI伦理等新兴领域潜力巨大。技术应用呈现两极分化:程序员岗位重构,医生教师效率提升但引发伦理争议。企业更注重实战能力,年轻人需掌握自然语言处理等核心技术,把握跨界发展机会。报告显示AI正推动职业向高价值转型,同时带来替代风险与行业变革。配套提供104G全套学习资源包,涵盖视频教程、技术文档及面试指导,助力职业转型。
2026-01-27 16:31:01
621
原创 2026年程序员转型的黄金方向:大模型应用开发工程师,高薪就业+副业增收双选择!
2025年大模型应用开发工程师将成为最热门技术岗位,未来5年AI人才缺口达400万,大厂相关岗位薪资高达60K*16薪。文章提供完整的大模型学习路线,包括系统设计、提示词工程等7个阶段,并分享640套AI大模型资源。掌握该技术可成为全栈工程师,薪资提升10%-20%。同时推荐104G免费学习资源包,包含视频教程、电子书籍、面试题等,适合应届生、转行者和开发者学习,帮助实现职业转型和高薪就业。
2026-01-27 00:19:22
767
原创 告别RAG!DeepSeek提出Conditional Memory技术,大模型长期记忆新思路(含完整架构解析,建议收藏)
DeepSeek提出Conditional Memory(条件记忆)技术,通过Engram架构实现模型内"可学习查表",解决大模型长期记忆问题。该方法包括构造N-gram、Hash映射和创建可学习的embedding表,采用多路N-gram融合和上下文感知的门控机制,使记忆信息能根据上下文动态注入。此外,DeepSeek-OCR通过视觉token压缩长文本上下文,为解决大模型记忆遗忘问题提供新思路。
2026-01-27 00:18:27
890
原创 一文搞懂LLM、RAG和AI Agent:大脑、记忆与手脚的完美配合
文章将AI系统比作人,阐明LLM、RAG和AI Agent三者的互补关系:LLM作为"大脑"提供推理与语言能力但知识静止;RAG作为"记忆系统"连接外部实时数据库解决知识更新问题;AI Agent作为"手脚"赋予自主行动能力。三者可单独或组合使用:LLM适合纯语言处理,RAG适用于需要精确信息的场景,AI Agent则用于需自主执行复杂任务的场合。这种分层架构使AI系统具备更全面的能力。
2026-01-27 00:17:34
615
原创 AI Agent技术栈深度解析:Function Calling、MCP、Skills与Agent的关系与实现
本文解析了AI Agent的四大核心技术:Function Calling作为工具调用基础,MCP作为标准化接口协议,Skills用于复杂Prompt定义,以及具备自主决策能力的Agent。这些技术旨在平衡大模型的不确定性与传统程序的可预测性,通过工具约束使AI输出更可靠。文章详细介绍了各技术的实现原理和调用流程,包括Function Calling的交互步骤、MCP的工作机制,并提供了代码示例,帮助理解AI Agent如何整合这些组件完成任务。这些技术共同构成了AI Agent的核心架构,使其能感知环境、
2026-01-27 00:16:41
1000
原创 AI新手必看!LLM、RAG、MCP、AI Agent 4大概念详解,一次搞清它们的区别与关系
文章从工程视角区分AI领域四个易混淆概念:LLM是提供思维能力的大脑,RAG是长期记忆系统,MCP是安全操作工具接口,AI Agent则是整合这些能力的员工形态。它们不是同一层级概念,而是层层叠加的能力,共同构建能自主工作、完成闭环的AI系统。
2026-01-27 00:15:55
838
原创 大模型微调经验分享:数据预处理、模型结构、训练参数与错误处理_AI大模型面经轻松应对面试!
本文系统分享了大模型微调的实战经验,从数据预处理、模型结构、训练参数到错误处理四大维度提供解决方案。数据优化建议截断对话、顺滑语句并过滤敏感内容;模型结构推荐使用Causal Decoder+ROPE位置编码;训练参数设置强调大batch size和动态学习率调整;针对OOM问题提出数据并行处理方法,错误处理建议选择合适断点重训。文章还提供了104G大模型学习资源包,包含视频教程、技术文档和面试指南,助力开发者高效掌握大模型微调技术。
2026-01-25 20:07:00
587
原创 从ChatGPT到AGI:大模型代理推理(Agentic Reasoning)技术全解析,程序员必收藏
这篇论文介绍了大语言模型从"静态推理"到"代理推理"的范式转移,强调推理应是一个物理过程而非仅是内部计算。文章构建了Agent能力的三维框架:基石(规划、工具使用、搜索)、进化(反馈循环、动态记忆)和协作(群体智能)。探讨了两种实现流派:推理时编排和训练后内化,并展示了科学发现、编程等领域的应用。未来AI的竞争力将在于构建强大的代理循环系统,而非仅依赖基础模型大小。
2026-01-25 20:05:56
592
原创 大模型实战:从工具到智能伙伴,迈向智能化协作时代(程序员必看
AI技术正从单一工具演变为智能伙伴,在智能监管合规、远程业务、产品智能化及生产力提升等领域实现从"流程自动化"向"决策智能化"的跃迁。通过多智能体协同平台、领域微调大模型、向量数据库等技术,AI在监管合规、远程服务、产品功能和开发运维等方面实现深度应用,驱动业务模式革新,提升效率与价值创造能力。
2026-01-25 20:04:40
749
原创 vLLM+Qwen2-7B大模型部署教程:无需复杂配置,半小时搞定本地AI应用,建议收藏!
本文详细介绍了使用vLLM框架本地部署Qwen2-7B大模型的完整流程,包含硬件准备(需NVIDIA GPU≥16GB显存)、软件安装、模型下载和启动验证等步骤。通过modelscope平台快速下载模型权重,利用vLLM框架实现高效推理(支持OpenAI兼容接口),整个过程仅需半小时即可完成部署。该方法既保障数据隐私,又能获得接近云端的推理速度,适合构建个人知识库或小型团队AI应用。文末还提供了大模型学习资源包,包含教程视频、技术文档和面试题库等进阶资料。
2026-01-25 20:02:47
638
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅