- 博客(1954)
- 收藏
- 关注
原创 AI大模型学习路线(2026最新)收藏这一篇就够了!_AI大模型学习路线
大模型学习路线:首先打好数学基础,包括线性代数(矩阵、向量等)、微积分(导数、积分)和概率统计(概率分布、贝叶斯定理)。推荐Khan Academy和MIT的公开课程。同时掌握Python编程及PyTorch/TensorFlow框架,为后续机器学习与深度学习学习奠定基础。
2025-12-06 18:00:41
1122
原创 Java程序员转行大模型开发全攻略:从零基础到项目实战,建议收藏备用_大模型入门到精通,收藏这一篇就够了
Java程序员转型大模型开发需学习机器学习基础,掌握TensorFlow等工具,强化数学和编程能力。Java程序员在软件架构方面有优势。AI时代催生多种新岗位,包括AI工程师、数据工程师等,需掌握多领域知识。文章提供学习路线和资源,帮助程序员抓住AI机遇实现职业转型。
2025-12-31 16:56:52
1016
原创 RAG文档预处理全攻略:从Embedding到图像处理的实战指南
本文详细介绍了RAG技术中文档预处理的关键步骤和技巧。首先强调了文档预处理的重要性,能有效避免检索不相关内容和减少模型幻觉。然后介绍了三种文档处理形式:自动分段与清洗、自定义分段和按层级分段,并提供了关键处理技巧。最后针对文档中图像的处理提出了三种方法:图像注释标注、OCR技术和图像理解模型,帮助提升RAG系统的处理效率和精确度。
2025-12-31 16:55:53
913
原创 DeepSeek-OCR:3B参数大模型如何实现视觉文本压缩,单GPU高效处理长文本
DeepSeek-OCR突破性采用"视觉压缩文本"技术,将文字信息转化为高密度视觉token,3B参数模型在文档解析任务中实现SOTA表现。其核心创新包括:1)DeepEncoder编码器实现高分辨率图像到极简token的高效转换;2)提出"光学压缩模拟人类遗忘"机制,为处理长上下文提供新思路。该技术被业界誉为"AI的JPEG时刻",仅用A100单卡即可日生成20万页训练数据,GitHub开源即获3.3K星。团队由Haoran Wei等三位低调但经
2025-12-31 16:54:38
738
原创 DeepSeek大模型:从崛起到悬崖,中国AI的破局之路与开发者学习指南
DeepSeek大模型曾以低成本、高性能、开源挑战全球AI巨头,后陷入技术争议、数据泄露、安全攻击等困境。文章分析其当前处境与东山再起之路,包括技术创新、商业模式探索和信任重建。作为中国AI产业代表,DeepSeek的成败关乎整个中国AI能否突破,其故事值得所有技术人关注和学习。
2025-12-31 16:53:23
578
原创 deepseek(冬季)招聘!含非技术岗!月薪3w+,全职&实习可投!
2025年,AI变革以远超预期的速度渗透到各行各业。从当初的ChatGPT引爆关注,到如今AI应用遍地开花,这个行业正以前所未有的活力吸引着全球目光其中一家成立不到两年的中国公司,让全球科技巨头感到压力,其应用上线后迅速登顶140多个国家的下载榜首,他就是**Deepseek**!
2025-12-31 16:52:15
559
原创 大模型入门到精通:30节系统课程+500篇论文,程序员必学AI高薪技能_全方位大模型教程:从基础入门到实战应用,非常详细的大模型教程
本文介绍了一套30节的AI大模型系列课程,涵盖理论、论文带读和项目实战,包含NLP、模型量化、剪枝、扩散模型、RLHF等核心技术。课程提供500+论文、100套商业方案和200本书籍,配有从零基础到进阶的学习路线。掌握大模型技术可成为全栈工程师,薪资上浮10%-20%,是当前AI领域高需求、高待遇的热门方向。
2025-12-30 20:00:47
1046
原创 小白必看:大模型高阶技术RAG完全指南,从入门到企业级应用
RAG(检索增强生成)技术通过外挂知识库有效提升大模型回答的准确性、可解释性,减少"幻觉"问题。文章详细介绍了RAG的三种解决思路(微调、提示工程、知识检索增强)、技术发展历程(朴素RAG→进阶RAG→智能体RAG)及核心原理(检索→增强→生成)。重点阐述了RAG知识库的5步搭建流程:文本准备、嵌入模型、向量数据库、检索接口封装和回答生成。该技术为企业提供了低成本应用垂直领域专业知识的新途径,适用于文档检索、智能客服等场景,是解决大模型局限性的创新方法。
2025-12-30 19:59:19
731
原创 小白也能学会:本地部署媲美ChatGPT的私人知识库
本文介绍使用Ollama+DeepSeek+AnythingLLM组合方案在本地搭建私人知识库的方法,解决企业用户数据安全顾虑。文章详细讲解从配置Ollama、设置嵌入模型到安装AnythingLLM、构建专属知识库的完整步骤,大幅降低初学者使用门槛。通过这套方案,用户可在自己电脑上搭建媲美ChatGPT的私人知识库,既享受AI强大能力,又完全掌控数据安全。
2025-12-30 19:57:30
721
原创 企业级知识库搭建全攻略:vLLM+Qwen+RAG技术栈详解,附65页手册
本文介绍字节跳动大佬整理的65页《企业级知识库搭建手册》,详细指导企业基于vLLM+Qwen 7b模型搭建本地大模型,结合Langchain+Faiss向量数据库与RAG技术实现企业级知识库应用。手册涵盖环境准备、安装配置、模型部署到RAG实现的全流程,为程序员和小白提供实用的企业级知识库搭建指南。
2025-12-30 19:56:14
851
原创 Qwen3大模型永久白嫖!手把手教你搭建本地知识库,打造你的专属最强大脑!
今天就来给大家介绍一个Cherry studio中非常实用的功能,那就是**本地知识库的构建**。废话不多说,开整!
2025-12-30 19:55:03
475
原创 AI大模型完整学习路线,助程序员小白快速入门_自学AI大模型学习路线推荐
文章提供了一条系统的AI大模型自学路线,涵盖数学与编程基础、机器学习入门、深度学习深入、大模型探索、进阶应用及社区资源六个阶段。每个阶段都配有理论学习和实践项目推荐,并提供了丰富的学习资源和参考资料。文章旨在帮助零基础小白和程序员系统掌握AI大模型技术,从入门到精通。
2025-12-29 20:03:08
1194
原创 大模型提示词技术完全指南:从零样本到思维链的实战应用
摘要:本文系统梳理了大模型中的核心提示词技术,包括零样本提示(Zero-Shot)、多样本提示(Few-Shot)、思维链(Chain-of-Thought)等,分析了这些技术从GPT-3时代到2025年的演进过程。文章通过具体案例展示了不同技术的适用场景,如Few-Shot在方言翻译中的应用和潜在局限,以及CoT技术如何通过分步推理提升复杂计算任务的准确性。同时探讨了提示词工程中的实践要点,强调技术选择需结合任务特性和模型能力。这些技术已广泛应用于Claude Code、AI诊断助手等实际场景,体现了提示
2025-12-29 20:02:00
635
原创 程序员必学!上下文工程:让大模型成为你的‘复杂知识管家‘(建议收藏)
上下文工程是随着大模型上下文窗口扩大而兴起的技术体系,专注于优化大模型上下文窗口的使用,解决长文本处理中的信息丢失、性能衰减和成本问题。它通过信息分层、动态管理、语义检索和架构设计等技术,在有限上下文窗口内最大化关键信息的密度与可用性,与提示工程协同工作,共同提升大模型的理解能力和输出质量。
2025-12-29 20:00:28
491
原创 提示工程完全指南:32个核心技巧,让你的AI效率提升10倍
本文系统介绍提示工程(Prompt Engineering)的32个核心技巧,从基础四大基石(清晰表达、上下文管理、结构化设计、迭代优化)到进阶方法(教学模式、推理激发、智能体模式、减少幻觉策略),帮助读者掌握人机沟通新艺术,提升AI使用效率,在AI时代保持竞争力。强调提示工程是解锁AI真正潜力的关键,鼓励读者从基础开始实践。
2025-12-29 19:58:50
612
原创 用学习考试过程彻底搞懂大模型:预训练、微调、提示词与RAG原理解析
文章通过类比学习考试过程,解释大语言模型工作原理:预训练相当于内化知识;微调如同学习答题技巧而非新知识;提示词工程相当于清晰考题;RAG类似开卷考试,关键在于整理"小抄"。理解这一逻辑有助于有效使用AI工具,合理预期其能力边界,选择适当方法解决不同问题。
2025-12-29 19:56:10
731
原创 程序员收藏清单:大模型(LLM)从入门到精通全栈指南,非常详细收藏我这一篇就够了
本文是一份系统化的大模型(LLM)学习指南,涵盖从数学基础、Python编程、神经网络到自然语言处理的基础知识,以及LLM架构、数据构建、预训练、微调、评估、量化等核心技术。文章详细介绍了机器学习的数学基础(线性代数、微积分、概率统计)、Python编程与数据科学库、神经网络原理与优化、NLP预处理与特征提取技术,以及LLM架构、指令数据集构建等关键内容。提供了丰富的学习资源和实践案例,适合从入门到进阶的学习者,帮助系统掌握大模型技术。
2025-12-28 18:53:04
773
原创 大模型性能优化指南:4种简单方法提升LLM应用效果,建议收藏
本文介绍了四种提升大语言模型(LLM)应用性能的实用技巧:1)利用缓存token将静态内容放在提示开头,显著降低成本和提高速度;2)将用户问题置于提示末尾,可提升30%性能;3)使用提示优化器改进提示结构和内容;4)建立定制化基准测试选择最适合的LLM。这些方法简单易行,无需额外工作量即可同时提升响应质量并降低成本,适用于各类LLM项目。
2025-12-28 18:51:38
712
原创 2025年大模型架构演变全解析:从GPT到DeepSeek-V3,万字干货必收藏!
2025年主流开源大模型架构分析:DeepSeek-V3/R1、OLMo 2等模型通过多头潜在注意力(MLA)、混合专家(MoE)等创新设计,在保持性能的同时显著提升计算效率。MLA通过压缩键值对减少缓存占用,MoE稀疏激活实现参数高效利用。OLMo 2采用后置RMSNorm和QK-Norm优化训练稳定性。这些架构演变反映了大模型在推理效率、训练稳定性方面的持续优化趋势,虽未突破Transformer基础框架,但通过细节创新推动技术发展。
2025-12-28 18:50:39
939
原创 C端产品经理转型大模型产品经理的完整路径与资源包,非常详细收藏我这一篇就好了
本文分析了C端产品经理转型大模型产品经理的能力优劣势、需补充的知识领域及必备心态,提出专业化、平台化、生态化三种发展方向。同时提供系统化学习路线和丰富资源,帮助产品经理快速掌握大模型技术,实现职业转型,成为大模型时代的复合型人才。
2025-12-27 16:24:52
1207
原创 InfoCLIP:信息瓶颈+互知识迁移,实现高效开放词汇语义分割
InfoCLIP提出基于信息论的框架解决CLIP微调难题,通过信息瓶颈压缩噪声和互信息最大化知识传递,从"冻结"教师模型提取纯净像素-文本对齐知识,转移给学生模型。双互补机制保护CLIP开放词汇能力,实验在多个基准测试上超越现有方法,为视觉-语言模型知识迁移提供新思路。
2025-12-27 16:21:32
874
原创 智能体探讨:Agent Skills开源,是MCP的延伸,还是Prompt的绝杀?
Anthropic于12月18日发布Agent Skills作为一项开放标准,并在agentskills.io上发布了规范和SDK,供任何AI平台采用。此举延续了Anthropic构建行业基础设施而非专有壁垒的战略,正如模型上下文协议(MCP)的普及一样。
2025-12-27 16:20:04
680
原创 AI开发入门:一文搞懂LLMs、RAG与AI Agent的核心区别
文章解释了AI领域的三个关键概念:LLMs作为"天才大脑"提供思考能力但有知识时效性;RAG作为记忆系统链接外部知识库解决实时性问题;AI Agent作为执行层具备自主行动能力。三者并非竞争技术,而是在不同层面满足不同场景需求。未来AI应用架构应结合三者优势:用LLMs进行推理,用RAG确保准确性,用Agent实现自主性,共同构建完整的AI智能系统。
2025-12-27 16:16:33
969
原创 大模型编程革命:代码LLM全面解析与实践指南,值得收藏学习
《代码大模型全面综述与实践指南》系统分析了代码LLM从数据构建到应用的完整生命周期,对比了通用与专用模型的技术特点,探讨了学术与工业实践的鸿沟,并深入研究了前沿范式与实验验证,为开发者提供了从理论到实践的技术路线图。
2025-12-27 16:15:42
730
原创 30岁转行AI大模型,刚好赶上风口!非常详细收藏我这一篇就够了
“30岁,人生过半,转行还来得及吗?”这是很多人在职业瓶颈期的自我怀疑。但我想告诉你,**30岁转行AI大模型,不仅来得及,还刚好赶上了风口!** 我是如何从一个传统行业的从业者,成功转型为AI大模型领域的技术人才的?今天,我将分享我的真实经历和面试经验,希望能给正在迷茫的你一些启发。
2025-12-26 14:50:23
1024
原创 Transformer训练完全指南:为什么99%的教程都错了?没有神秘算法,只有反向传播!
Transformer训练机制本质与普通神经网络相同,都是通过反向传播调整参数。文章澄清了常见的误解,指出Transformer的可训练参数包括词嵌入、位置编码、自注意力层的Q/K/V/O权重矩阵、前馈网络权重和LayerNorm参数。作者强调理解Transformer的最佳方式是动手实现,其训练过程就是标准的反向传播和梯度下降,没有任何特殊之处。文章还批评了多数教程过度关注前向传播而忽略训练机制的做法,建议通过实践代码来真正掌握Transformer的工作原理。
2025-12-26 14:48:57
498
原创 LangGraph内存架构全解析:构建能记住过去的AI智能体实战指南
本文详细介绍了如何使用LangGraph构建具有持久记忆能力的AI智能体。通过分析LangGraph的双系统记忆架构(短期记忆和长期记忆),讲解了记忆专用节点设计、优化策略及常见问题解决方案。文章强调了State作为记忆流转中枢、专用记忆节点实现闭环操作、外部存储作为持久化基石的重要性,结合LangChain和MCP的能力,使AI智能体从单次工具调用升级为持续的个性化助手。
2025-12-26 14:45:58
805
原创 大模型时代,人类不会被替代反而迎来新机遇 | 程序员必看!AI催生的2个高薪岗位,最高年薪67.5w!
面对大模型发展,人类无需焦虑,因AI无法复制人类的情感、共情能力和创造力。同时,大模型催生了如AI应用开发工程师和训练师等高薪岗位,这些岗位不要求成为技术大神,而是学会"驾驭"AI。AI是战友而非对手,淘汰的是重复劳动,而非有温度、会借力的人。保持不可替代性的关键是守住人类独特价值,同时拥抱变化。
2025-12-26 14:44:55
843
原创 从零开始:使用LangChain+FastAPI构建RAG系统,掌握异步处理与文档检索核心技术
本文介绍了基于LangChain和FastAPI构建RAG系统的完整流程。RAG系统通过结合检索外部信息与语言模型生成能力,能提供更准确的回答。文章详细讲解了RAG的工作原理、关键组件(文档加载、文本分割、索引、检索模型和生成模型),并提供了环境配置、文档处理、向量存储设置、API开发及部署的完整代码示例。特别展示了如何加载文本文件、分割文档、建立索引,以及通过FastAPI构建可扩展的RAG应用。最后还讨论了多种云部署方案,帮助开发者将原型转化为生产级应用。
2025-12-26 14:43:46
932
原创 大模型技术详解与应用实践:程序员进阶必读:AI大模型学习路线,提升核心竞争力
文章全面介绍大模型的基础概念、学习价值、应用场景及行业机遇,提供系统化学习资源。大模型作为AI前沿技术,已在多领域展现应用价值,领域尚未形成稳固护城河,价值更多积累在硬件和基础设施层面。文章为小白和程序员提供从基础到进阶的学习路线,包括API应用开发、私有化部署等实践内容,帮助读者掌握大模型技术。
2025-12-25 17:23:35
881
原创 从网络流到模型流:大模型结构化数据流式输出完全指南(建议收藏)
本文讨论了大模型流式输出结构化数据的实现方法。针对前端渲染响应时间长导致用户体验差的问题,作者借鉴网络编程思想,提出通过后端解析流式输出的不完整结构化数据(如JSON),使用栈结构等数据技术保证数据完整性,再传给前端实现流式渲染。这种方法虽实现复杂,但能有效提升用户体验,特别适用于大模型应用中需要实时渲染的场景。
2025-12-25 17:22:38
679
原创 打造完全本地隐私的AI助理:Obsidian+Ollama+Qwen 3构建个人RAG知识库
本文介绍如何使用本地Ollama+Qwen 3模型结合Obsidian构建完全隐私保护的RAG知识库。作者解释了RAG技术原理,将Obsidian笔记向量化存储到本地ChromaDB,实现基于个人知识的智能问答。开发了名为MyGPT的本地应用,解决了云端AI的隐私泄露风险和网络依赖问题,打造出完全离线、绝对隐私的私人AI助理。
2025-12-25 17:21:46
962
原创 技术文档团队AI应用实战:从小白到专家的渐进式学习路径
技术文档团队可从小而具体的低风险目标开始,将AI视为助手而非替代者。建议从文本起草、内容骨架构建、访谈准备和翻译辅助四个场景入手测试AI应用,同时严格把控数据安全和内容质量。通过六步计划逐步将AI融入工作流程,实现AI提供初稿灵感,人工把控质量的专业化协作模式。
2025-12-25 17:20:44
708
原创 2025年AI大模型将取代传统开发!30+程序员职业转型指南,抓住50K高薪风口!
AI大模型正重构程序员职业命运,传统岗位面临淘汰风险,而AI技术人才需求旺盛,3-5年经验者薪资可达50K*20薪。未来一年,"有AI项目经验"将成为简历门槛。本文推荐免费大模型应用开发实战训练营,涵盖大模型原理、RAG技术、微调方法及实战项目,帮助程序员快速掌握AI技术,实现职业转型,抢占高薪先机。
2025-12-24 19:48:25
949
原创 后端开发者拥抱AIGC转型指南:从零到一掌握大模型应用开发
文章提出AI金字塔模型,指出应用级开发者机会主要在AI原生应用层。通过分析技术架构、职业机会和所需技能,强调AI不会替代人,但会替代不会使用AI的人。开发者应抓住转型机遇,成为"掌握AI工具的技术人",结合模型理解与行业场景开发应用,现在正处于爆发前夜,是抢占先机的最佳时机。
2025-12-24 19:46:53
1016
原创 企业大模型推理优化,别再瞎优化了:这份系统性指南助你降本增效
企业级大模型推理优化面临计算瓶颈、内存带宽、IO瓶颈等多维挑战,需系统性分层解决。基础层通过量化、剪枝和知识蒸馏优化模型;引擎层利用TensorRT、vLLM等技术提升计算效率;系统层采用分布式推理和Triton等框架优化部署。盲目局部优化可能引入新问题,需整体考量模型特性、硬件限制和业务需求,才能实现高效低成本的服务。
2025-12-24 19:45:43
624
原创 AI大模型应用开发全攻略:入门到实战
本文系统介绍AI大模型应用开发核心技术,涵盖Messages对话记忆、RAG检索增强生成、Tools工具调用、ReAct推理行动模式、Agent自主任务执行等关键概念。通过具体案例和代码示例,阐述大模型如何结合业务需求实现智能交互,包括知识库检索、数学计算等场景。文章强调大模型并非独立执行任务,而是通过API交互、参数控制和系统配合实现功能,为开发者提供从基础到实战的学习路径。
2025-12-24 19:44:47
887
原创 从200万AI客服翻车事件,看大模型RAG技术如何选型避坑
文章通过AI客服系统错误回答的案例,深入解析RAG技术的选型之道。RAG让AI从"闭卷考试"变为"开卷考试",解决时效性和专业性问题。文章详细介绍了Naive RAG、Graph RAG、Agentic RAG和DeepSearch四个技术段位的优劣,强调企业应根据实际需求和成本控制选择合适方案,从简单开始逐步迭代,技术是为业务服务,实用才是王道。
2025-12-24 19:43:40
818
原创 AI产品经理转行必备:面试高频问题+大模型学习资源大礼包_从传统产品经理到AI产品经理的必备指
文章指出AI行业是2024年最缺人的领域,AI产品经理薪资高达90万元,是互联网人转行的理想选择。文章详细整理了AI产品经理面试的八大类高频问题,包括技术背景、工作场景、产品经验等,并提供了从零基础到进阶的大模型学习路线,包含系统设计、提示词工程、平台应用开发等七个阶段,以及大量学习资源,帮助求职者全面准备AI产品经理岗位。
2025-12-23 17:41:30
1120
原创 从零开始学大模型:AI产品经理成长指南,附完整学习资源包,建议收藏!
本文系统梳理AI产业架构,将AI公司分为行业+AI、AI+行业和基础平台三类,并详细分析各自特点与产品经理能力要求。文章提出AI产品经理的狭义与广义分类,构建包含商业变现、需求把控、技术推动和用户信任四大维度的能力模型。同时深入解析计算机视觉、语音交互和自然语言处理三大AI应用领域的技术原理与落地场景,为AI产品经理提供从理论到实践的完整学习路径,助力成为AI时代的复合型人才。
2025-12-23 17:40:27
658
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅