springboot接入deepseek深度求索 java

以下是在springboot中接入ai deepseek的过程。官网并没有java的示例。其实java的都可以用。

1. 创建 API key   网址:deepseek API keys 

点击创建API key,把创建的key值复制下来,以后就不能再查看了,只能重新创建。

2. 封装询问deepseek的工具方法askDeepSeek()

添加key值和询问路径。API_KEY为你创建的key值。

    private static final String API_URL = "https://api.deepseek.com/chat/completions";
    private static final String API_KEY = "11111111"; // 替换为你的 API Key

工具方法askDeepSeek():

传入的参数question就是要询问的问题。

public String askDeepSeek(String question) throws IOException {
        CloseableHttpClient client = HttpClients.createDefault();

        // 创建 HTTP POST 请求
        HttpPost request = new HttpPost(API_URL);
        request.setHeader("Content-Type", "application/json");
        request.setHeader("Authorization", "Bearer " + API_KEY);

        // 动态构建请求体
        String requestBody = String.format(
                "{\"model\": \"deepseek-chat\", \"messages\": [{\"role\": \"user\", \"content\": \"%s\"}], \"stream\": false}",
                question
        );
        request.setEntity(new StringEntity(requestBody));

        // 发送请求并获取响应
        try (CloseableHttpResponse response = client.execute(request)) {
            // 返回响应内容
            return EntityUtils.toString(response.getEntity());
        }
    }

3. 调用该询问ai的方法

String  question1= "今天是星期几。 " ;
String answer = askDeepSeek(question);
System.out.println("answer = " + answer);

4. 成功返回示例

content里的就是返回的回答。

answer = {"id":"88dbce49-2841-448d-a74f-a2d3180c5672","object":"chat.completion","created":1734525002,"model":"deepseek-chat","choices":[{"index":0,"message":{"role":"assistant","content":"当然,我很高兴!谢谢你的关心。😊"},"logprobs":null,"finish_reason":"stop"}],"usage":{"prompt_tokens":12,"completion_tokens":11,"total_tokens":23,"prompt_cache_hit_tokens":0,"prompt_cache_miss_tokens":12},"system_fingerprint":"fp_1bcb2de9ac"}

不过我接入之后,他只能回答一些很简单的问题,有没有大佬会用啊~

### DeepSeek 深度求索平台简介 DeepSeek 是由深度求索公司开发的一个先进的人工智能研究和技术服务平台。该平台专注于大规模预训练模型的研究和发展,在2024年1月11日推出了名为 DeepSeekMoE 的新型混合专家(MoE, Mixture of Experts)架构的语言模型,这标志着在追求极致专家特化方面迈出了重要一步[^1]。 ### 使用指南 #### 准备工作 为了能够顺利使用 DeepSeek 提供的技术和服务,建议先完成如下准备工作: - **环境配置**:确保本地计算资源满足最低硬件需求,包括但不限于 GPU 支持 CUDA 版本匹配等。 - **软件安装**:按照官方文档指引安装必要的依赖库和工具包,比如 Python 环境及相关机器学习框架。 ```bash pip install torch transformers datasets ``` #### 获取访问权限 对于有兴趣参与或利用 DeepSeek 技术成果的研究人员来说,可以通过注册成为社区成员来获取更多的支持和服务。具体操作可以参照官方网站上的说明进行申请流程。 #### 数据集准备 当涉及到特定任务时,如微调已有的大语言模型(LLM),则需准备好相应的数据集用于训练过程中的输入。这些数据应当经过清洗处理并转换为目标格式以便于后续加载到模型中去。 ```python from datasets import load_dataset dataset = load_dataset('path/to/your/dataset') print(dataset['train'][0]) ``` #### 实验设计与执行 根据个人目标设定实验方案,选择合适的预训练模型作为起点,并对其进行定制化的调整以适应具体的业务场景。例如,如果目的是提高某个垂直领域的对话质量,则可以在原有基础上加入领域专业知识来进行增强。 ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer model_name_or_path = "deepseek-moe-base" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path) input_text = "你好,我想了解一下关于..." inputs = tokenizer(input_text, return_tensors="pt") with torch.no_grad(): outputs = model.generate(**inputs) response = tokenizer.decode(outputs[0], skip_special_tokens=True) print(response) ```
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值