完全背包问题

完全背包问题

一、典型题目

n种物品,每种有 无限 个。( 因此称为完全背包问题——对应着每个物体可以有0到k个选择——因为有着背包容量的限制,因此不可能有装入无限个)

第 i 种物品的体积为 V i V_i Vi$ ,重量为 $ W i W_i Wi

背包容量为 V 。

选物品装到背包,使得背包内的物品在总体积不超过C的前提下重量尽量大。

假设(后续表格展示的前提假设亦是如此):

背包容量max=4;

物品1–重量1 价值 15;

物品2–重量3 价值 20;

物品3–重量4 价值 30;

二、分析

​ 对于0-1背包,所面临的是不选(0)和选(1)的问题;而完全背包问题,则是不选(0)和选几个(1~k)的问题(实际上,也可以同意看作选几个(0 ~ k ) )

1、按照0-1背包思路——枚举K

那么,按照0-1背包的思路很容易就可以得出:f[i][j] = f[i-1][j-k*v[i]]+k*w[i];

int f[N][N];
int v[N],w[N];
int main()
{
    int n,m;
    cin>>n>>m;
    for(int i = 1 ; i <= n ;i ++)
    {
        cin>>v[i]>>w[i];
    }

    for(int i = 1 ; i<=n ;i++)
        for(int j = 0 ; j<=m ;j++)
        {
            for(int k = 0 ; k*v[i]<=j ; k++)
                f[i][j] = max(f[i][j],f[i-1][j-k*v[i]]+k*w[i]);
        }
   
    cout<<f[n][m]<<endl;
}

2、优化——去掉k

f[i][j] = max(f[i][j],f[i-1][j-k*v[i]]+k*w[i]) 展开后可得:

f[i] [j] = max( f[i-1] [j] , f[i-1] [j - $ v_i$ ] + w , f[i-1] [j - 2 * v i v_i vi] + 2 * w , f[i-1] [j - 3 * v i v_i vi] + 3 * w , …)

此外:

f[i] [j - v i v_i vi ] = max( f[i-1] [j - v i v_i vi ] , f[i-1] [j - 2 * v i v_i vi] + w , f[i-1] [j - 3 * v i v_i vi] + 2 * w , …)

于是:

f[i][j] = max(f[i][j-v] + w , f[i-1][j])

即:

f[i] [j]=max(f[i-1] [j],f[i] [j-v[i]]+w[i]);

(我们除了推导公式也可以这样去理解,对于f[i] [j]来说,如果没有容量了就是f[i-1] [j],如果还有容量f[i][j]=max(f[i][j],f[i][j-v[i]]+w[i]) ,就是无限的装,一直装到 当前的物品 不能装为止(j-v[i]<0)

那么:

int n, m;
int f[N][N], v[N], w[N];
int main()
{
    cin >> n >> m;
    for(int i = 1; i <= n; i ++ )
        cin >> v[i] >> w[i];
    for(int i = 1; i <= n; i ++ )
    {
        for(int j = 0; j <= m; j ++ )
        {
            if(v[i] <= j) //如果有容量
                f[i][j] =max(f[i][j], f[i][j - v[i]] + w[i]);
            else	//如果没有容量
                f[i][j] = f[i - 1][j];
        }
    }
    cout << f[n][m] << endl;
}

3、降维——一维数组解决

int f[N];
int v[N],w[N];
int main()
{
    int n,m;
    cin>>n>>m;
    for(int i = 1 ; i <= n ;i ++)
    {
        cin>>v[i]>>w[i];
    }

    for(int i = 1 ; i<=n ;i++)
        for(int j = v[i] ; j<=m ;j++)//按 顺序 遍历
        {
                f[j] = max(f[j],f[j-v[i]]+w[i]);
        }
    cout<<f[m]<<endl;
}

三、思考与总结

1、为什么完全背包问题是按顺序遍历

​ 关键点在于为什么0-1背包需要逆序遍历,是因为每个物品只能装一次;而完全背包问题没有此限制。

2、一般,完全背包问题对于先遍历物品还是先遍历容量没有限制

3、 对比0-1背包问题:

f[i][j] = max(f[i][j],f[ i-1 ][j-v[i]]+w[i]);//01背包

f[i][j] = max(f[i][j],f[ i ][j-v[i]]+w[i]);//完全背包问题

对比之后,有以下体会:
二者最关键的在于当前数组的“状态”的“阶段”的问题:
0-1 背包———考虑的是组合的搭配,所以后面的情况依赖于前面的选择——————>>因此必须 逆序 遍历,才能在一维数组的情况下不“污染”上一个“阶段”(状态)的数据并与其比较=>> 这时候的上一个阶段是上一个物品所能 恰好 留出 当前物品的空间 时的搭配情况
完全背包———考虑的是尽可能多装,所以每次容量j的的增加是与自身的前一个j相对比–>所以和 不同 物品之间无关————但是当v[i]==j时(或者说可以恰好第一次放入物品时),就需要与上一个物品进行比对,但是能装还得装进背包——————>>因此需要 顺序 遍历,因为只需要和自身(同一种物品)进行比较=>> 这时候的上一个“阶段”是同个物品的少一个的数量

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值