- 博客(107)
- 收藏
- 关注
原创 LangChain项目分享:智能对话助手
本文介绍了使用LangChain框架构建智能对话助手的实现过程。首先进行需求分析,设计一个能调用本地数据库和搜索引擎的Agent,具备记忆功能和交互能力。然后分步骤实现:定义Tavily搜索工具、创建基于维基百科的检索工具集、将工具绑定语言模型、构建Agent程序并测试其查询功能。最后添加对话记忆功能,使Agent能记住不同会话ID的历史信息。代码展示了从工具定义到完整对话系统的完整开发流程,实现了可交互的智能助手功能。
2025-10-31 16:28:22
479
原创 LangChain最详细教程之Retrieval
本文详细介绍了LangChain框架中的Retrieval模块设计,重点解决大模型在专业领域知识问答中的“幻觉”问题。文章阐述了RAG(检索增强生成)技术的原理与实现流程,包括文档加载、转换、嵌入、存储和检索等核心环节。通过具体代码示例展示了如何加载多种格式文档(TXT/PDF/CSV/JSON等),使用不同策略进行文本拆分(字符/递归/语义分块),以及利用向量数据库实现相似性检索。最后演示了如何将检索结果与大模型结合,构建问答系统。全文系统性地讲解了LangChain框架下知识检索增强的实现方法,为开发专
2025-10-31 15:11:02
1230
原创 LangChain最详细教程之Agents
本文系统介绍了LangChain框架中Agent(智能体)的详细使用方法。主要内容包括:1. Agent的基本概念与核心组件(LLM、Memory、Tools等),以及与Chain的区别;2. 两种主要Agent模式(FunctionCall和ReAct)的特点及适用场景;3. AgentExecutor的两种创建方式(传统方式和通用方式);4. 工具集成方法,包括单工具、多工具和自定义工具的使用;5. 如何为Agent添加记忆组件实现上下文感知。通过多个代码示例展示了不同场景下Agent的实际应用,包括天
2025-10-30 21:41:55
965
原创 LangChain最详细教程之Tools
本文详细介绍了LangChain框架中的Tools模块,重点讲解了如何自定义工具来扩展大语言模型(LLM)的能力。主要内容包括:1) Tools的核心作用是通过与外部系统交互突破纯文本生成限制;2) 工具的五大要素:名称、描述、输入模式、调用函数和返回控制;3) 两种自定义工具方式:使用@tool装饰器和StructuredTool类方法;4) 实际应用示例展示如何通过大模型分析用户需求并调用相应工具。文章强调Tools是构建强大AI应用的关键,能够实现从认知到行动的跨越。
2025-10-29 17:09:29
939
原创 LangChain最详细教程之Memory
LangChain框架提供了多种Memory模块用于对话系统的上下文记忆管理。文章从基础模块到进阶模块系统介绍了各种Memory类型及其应用场景。 基础模块包括: ChatMessageHistory - 基础消息存储类 ConversationBufferMemory - 完整存储对话历史 ConversationChain - 对BufferMemory的简化封装 ConversationBufferWindowMemory - 仅保留最近K条对话 进阶模块包括: ConversationTokenBu
2025-10-29 10:58:28
1306
原创 LangChain最详细教程之Chains
本文系统介绍了LangChain框架中Chains(链)的基本概念和使用方法。主要内容包括:1) Chains的基本概念,即通过组合不同模块化单元构建AI工作流;2) LCEL表达式语言及其基本构成(Prompt+Model+OutputParser);3) Runnable协议的统一调用机制;4) 传统Chain的使用(LLMChain、顺序链等);5) 基于LCEL构建的新型Chains(如create_sql_query_chain和create_stuff_documents_chain)。文章通过
2025-10-27 21:18:07
967
原创 LangChain最详细教程之Model I/O(三)Output Parsers
本文是LangChain框架的详细教程系列,重点讲解Model I/O模块中的输出解析器功能。文章系统介绍了6种常用输出解析器的使用场景和实现方法:1) StrOutputParser字符串解析器;2) JsonOutputParser JSON解析器;3) XMLOutputParser XML解析器;4) CommaSeparatedListOutputParser列表解析器;5) DatetimeOutputParser日期解析器;6) 还介绍了如何通过Ollama调用本地大模型。每种解析器都配有代码
2025-10-26 21:13:01
892
原创 LangChain最详细教程之Model I/O(二)Prompt Template
本教程系统讲解了LangChain框架中的PromptTemplate模块,主要涵盖以下内容: PromptTemplate基础:介绍字符串格式化方法和两种实例化方式(构造方法和from_template()),以及部分提示词模板的实现方法。 高级功能:包括组合提示词、format()与invoke()的区别、结合大模型的使用方法。 ChatPromptTemplate:专门处理多角色对话场景,支持多种实例化方式和消息类型。 少量示例提示模板:介绍FewShotPromptTemplate和FewShotC
2025-10-26 20:03:35
736
原创 LangChain最详细教程之Model I/O(一)调用模型
本文系统介绍了LangChain框架中Model I/O模块的使用方法,重点讲解了模型调用相关内容。文章首先概述了Model I/O作为与语言模型交互的核心组件,包含输入提示、模型调用和输出解析三个步骤。随后详细阐述了三种模型分类方式:按功能分为非对话模型(LLMs)、对话模型(ChatModels)和嵌入模型;按参数配置分为硬编码、环境变量和配置文件;以及按API调用方式分为各平台API和LangChain统一调用。文章还深入探讨了对话模型的消息类型、多轮对话的上下文记忆机制,以及invoke、strea
2025-10-23 20:53:37
1651
原创 LangChain最详细教程之使用概述(三)
本文介绍了LangChain框架的入门使用指南,从基础到进阶系统讲解LLM应用开发。主要内容包括:1)通过ChatOpenAI实现大模型调用;2)使用提示词模板和输出解析器优化交互;3)演示向量存储和RAG技术实现文档检索;4)展示Agent代理的工作流程;5)详细说明如何获取DeepSeek等平台的大模型API密钥和配置方法。教程采用"系统梳理+实战落地"的方式,帮助开发者快速掌握LangChain的核心功能。
2025-10-22 20:47:59
916
原创 LangChain最详细教程之使用概述(二)
本教程系统介绍LangChain框架在大语言模型(LLM)应用开发中的核心组件和主要应用场景。重点解析两大主流架构:RAG(检索增强生成)通过检索外部知识解决模型幻觉问题;Agent架构则通过规划、记忆和工具调用实现智能决策。教程详细阐述LangChain六大核心组件:Model I/O(标准化输入输出)、Chains(流程串联)、Memory(上下文管理)、Agents(智能体)、Retrieval(RAG实现)和Callbacks(监控回调)。同时对比四种典型应用场景:纯Prompt交互、Agent+A
2025-10-22 19:50:33
1047
原创 深度学习之YOLO系列YOLOv4
YOLOv4是目标检测领域的重要算法,在YOLOv3基础上进行了全面优化。主要改进包括:采用CSPDarknet53主干网络;引入SPP模块和PANet进行特征融合;使用CIOULoss优化损失函数;创新性地应用Mosaic和CutMix数据增强技术;改进DropBlock正则化方法和标签平滑技术;提出DIOU-NMS优化非极大值抑制;引入注意力机制和Mish激活函数。这些改进使YOLOv4在保持实时性的同时显著提升了检测精度,tiny版本可达120FPS处理速度。网络架构采用残差块设计,通过特征金字塔实现
2025-10-21 21:30:52
1219
原创 LangChain最详细教程之使用概述(一)
本教程系统介绍LangChain框架,这是一个由哈佛大学Harrison Chase开发的开源工具,用于构建基于大语言模型(LLM)的应用程序。文章对比了LangChain与其他框架(如LlamaIndex、LangChain4J)的特点,阐述了其简化开发、统一接口、模块化设计等优势。详细解析了LangChain的架构演进、核心组件(包括LangGraph、LangSmith、LangServe)及其在智能体开发、RAG等场景的应用价值。教程适合具备Python基础、了解LLM基本概念的开发者,旨在帮助读者
2025-10-20 20:41:30
1765
1
原创 基于YOLOv3的猫狗识别
本文介绍了YOLOv3的代码实现,主要包含三部分内容:1. 项目文件结构解析,详细说明了各文件夹(.idea、assets、checkpoints、config等)和核心文件(detect.py、models.py等)的作用。2. 数据集准备流程,包括获取标注数据、生成训练/验证集划分文件(train.txt/val.txt),以及配置相关数据文件(.data/.cfg)。3. 核心代码解析,重点讲解了train.py训练脚本的参数配置、训练流程,以及models.py中的网络构建模块(create_mod
2025-10-20 15:50:15
787
原创 数据集打标签labelme安装及使用教程
本文介绍了常用的数据标注工具,重点讲解Labelme的安装与使用。Labelme是一款开源图像标注工具,支持多边形、语义分割、2D框等多种标注类型。安装时需先配置Python环境,通过pip命令安装PyQt5和Pillow依赖包后即可安装Labelme。使用时生成JSON格式标注文件,包含目标位置和标签信息。文章还提供了将Labelme的JSON格式转换为YOLO-V3训练所需的相对坐标格式的方法,通过Python脚本实现(x1,y1,x2,y2)到(Cx,Cy,W,H)的转换,最终生成可直接用于模型训练的
2025-10-14 21:36:47
949
原创 深度学习之YOLO系列YOLOv3
本文介绍了YOLOv3的主要改进:1. 网络结构优化,采用3种不同尺度的特征图(13×13、26×26、52×52)进行多尺度检测,提升小目标检测能力;2. 使用9种聚类获得的先验框,在不同尺度特征图上分配不同大小的锚框;3. 引入残差连接思想;4. 用独立的Logistic分类器替代Softmax,支持多标签分类。此外还介绍了COCO数据集的特点。这些改进使YOLOv3在保持实时性的同时提高了检测精度,特别是对小目标的检测能力。
2025-10-14 20:57:46
1002
原创 自然语言处理(NLP)之分词
本文系统介绍了自然语言处理中的分词技术,对比分析了英文和中文不同的分词方法。在英文分词方面,详细阐述了词级、字符级和子词级三种分词粒度,重点介绍了BPE等子词分词算法。中文分词部分则探讨了字符级、词级以及子词级分词的应用特点。文章还对比了jieba等传统分词工具与Hugging Face Tokenizer等现代分词工具,并深入讲解了Word2Vec词向量的原理、训练和应用方法,包括CBOW和Skip-gram两种模型结构。最后提供了加载预训练词向量和自行训练词向量的具体实现方法。
2025-10-13 20:26:03
1281
原创 计算机视觉进阶教学之颜色识别
本文介绍了基于HSV颜色模型进行颜色检测的方法。HSV模型通过色调(H)、饱和度(S)和明度(V)三个参数直观表示颜色,比RGB模型更适合颜色检测。文章提供了两种实现方式:第一种通过遍历固定区域的像素H值判断主颜色(红/黄/绿/蓝);第二种使用cv2.inRange()函数检测并高亮显示特定颜色范围的像素。两种方法各有优缺点,第一种逻辑简单但效率低,第二种效率高但需要预先调试HSV范围。这些方法适用于从简单颜色分类到复杂物体追踪等不同场景。
2025-10-13 14:34:24
862
1
原创 深度学习之YOLO系列YOLOv2
本文介绍了YOLOv2的改进之处:1)采用Darknet-19网络结构,引入BatchNorm层;2)使用更高分辨率输入和K-means聚类提取先验框;3)通过Anchor Box和Directed Location Prediction改进边界框预测;4)采用多尺度训练和特征融合技术增强小目标检测。相比YOLOv1,这些改进使mAP显著提升,同时保持了实时检测速度。文章详细阐述了网络结构优化、先验框生成方法、位置预测机制等关键技术点。
2025-10-11 02:15:00
1853
原创 深度学习之YOLO系列YOLOv1
YOLOv1作为首个实时目标检测算法,其核心思想是将图像划分为7×7网格,每个网格预测2个边界框和类别概率。采用24层卷积网络实现端到端训练,通过统一损失函数优化位置、置信度和分类误差。主要优点是检测速度快(45FPS)、流程简化且具有全局感知能力;但存在定位精度低、小目标和密集目标检测能力差等缺陷,如小目标召回率仅40%。这些优缺点为后续YOLO系列改进奠定了基础。
2025-10-10 20:54:44
1069
原创 深度学习之YOLO系列了解基本知识
YOLO系列算法是目标检测领域的革命性技术,通过单阶段检测实现高速高精度识别。相比传统两阶段方法,YOLO将检测转化为回归问题,采用网格预测和特征融合技术,在自动驾驶、安防监控等场景广泛应用。文章详细解析了YOLO的核心原理、与Faster R-CNN等算法的区别,以及评价指标mAP的计算方法。YOLO在速度和精度上优势明显,但单阶段检测正确率相对较低,而两阶段方法精度更高但速度较慢。mAP50和mAP50-95是评估模型性能的重要指标,分别对应不同IOU阈值范围的检测精度。
2025-10-10 20:12:18
1296
1
原创 深度学习之模型的部署、web框架 服务端及客户端案例
本文介绍了深度学习模型部署的关键环节与Web技术栈实现。文章首先阐述了模型部署的定义、目的及常见方式(云端、嵌入式设备、边缘计算等),然后对比了Django、Pyramid和Flask三大Python Web框架的优缺点。最后通过花卉识别案例,详细展示了使用Flask框架实现服务端部署的具体流程,包括模型加载、图像预处理、预测接口实现等核心代码,并演示了客户端调用服务的完整过程。该实践为深度学习模型的实际应用落地提供了可参考的技术方案。
2025-10-09 20:32:39
864
原创 计算机视觉进阶教学之Mediapipe库(二)
上一篇博客我们讲述了关于Mediapipe简介,以及讲述了手部识别与手势识别,今天我们就来看看我们自定义手势是如何完成的计算机视觉进阶教学之Mediapipe库(一)# 手势类别:键为数字(对应键盘按键),值为手势名称0: "fist", # 拳头1: "open_hand", # 张开的手2: "point", # 指向(单指)3: "peace", # 剪刀手(双指)4: "ok" # OK手势DATA_DIR = "gesture_data" # 总数据目录名称。
2025-09-30 01:30:00
1093
原创 计算机视觉进阶教学之Mediapipe库(一)
MediaPipe是Google开源的跨平台机器学习工具库,提供人脸检测、手势识别、姿态识别等视觉算法,支持多种平台和语言,并具备实时处理能力。本文介绍了MediaPipe的安装方法(需Python3.7+和OpenCV),重点演示了手部关键点检测和手势识别功能。手势识别通过分析21个手部关键点的3D坐标,计算手指与手腕的距离来判断手指是否伸直,最终识别0-10的数字手势。代码示例展示了如何调用MediaPipe API实现实时手势识别,并详细解释了关键算法逻辑。
2025-09-29 21:00:13
1690
原创 计算机视觉进阶教学之Dlib库(三)
本文介绍了基于CNN卷积神经网络的人脸识别方法。重点讲解了CNN的核心组件:卷积层(提取局部特征)、池化层(下采样)、激活函数(引入非线性)和全连接层(特征分类)。使用Dlib库实现人脸识别的步骤包括:加载预训练模型、检测人脸、提取特征向量和计算相似度。文中提供了代码示例,展示了如何利用Dlib的CNN模型进行人脸检测和标注。相比传统Haar级联方法,CNN人脸检测精度更高但计算量更大,适用于单张图片处理任务。
2025-09-29 01:00:00
2465
原创 自然语言处理项目之情感分析(下)
该文介绍了基于深度学习的微博评论情感分析项目实现过程。项目使用腾讯预训练的词向量模型(200维),通过LSTM神经网络对文本进行情感分类。主要步骤包括:1)数据预处理,将评论统一为32个词的固定长度;2)构建双向LSTM模型,包含嵌入层、LSTM层和全连接层;3)训练过程中采用交叉熵损失函数和Adam优化器;4)在测试集上评估模型性能。项目实现了对微博评论的自动情感分类,可用于舆情监测等场景。
2025-09-28 20:24:53
1318
原创 自然语言处理项目之情感分析(上)
本文介绍了一个微博评论情感分析项目的实现过程。项目首先通过构建词表将文本转换为词向量,使用腾讯预训练模型支持4762个词。针对评论长度不一致问题,采用固定长度70的策略:过长则截断,不足则用<PAD>填充,低频词用<UNK>替换。代码实现分为三个部分:1)建立词表并保存为二进制文件;2)处理评论数据,统一长度并切分训练/验证/测试集;3)将数据打包为Tensor类型,支持批次化处理。该方法为后续模型训练提供了规范化的数据输入,解决了文本长度不一和词汇稀疏性问题。
2025-09-24 22:11:20
915
原创 计算机视觉进阶教学之人脸识别
人脸识别是计算机视觉的核心技术,通过检测、特征提取和匹配实现身份验证。OpenCV提供三种主要算法:LBPH(局部二值模式直方图)算法对光照和旋转具有鲁棒性;EigenFaces基于PCA降维保留主要特征;FisherFaces采用LDA方法优化类间区分度。代码示例展示了三种算法的实现流程,包括训练模型、预测识别和处理中文显示问题。这些算法在安防、移动终端等领域有广泛应用,是连接理论与实践的典型案例。其中LBPH算法通过编码局部纹理特征实现识别,EigenFaces和FisherFaces则分别通过主成分分
2025-09-23 09:14:30
1646
原创 关于Pycharm中在运行出现语法错误:Non-UTF-8 code starting with
Python编码错误解决方案:当出现"Non-UTF-8 code"错误时,通常是由于文件编码格式问题。解决方法有三种:1)在文件首行添加编码声明#coding=utf-8或#coding=gbk;2)检查并修改PyCharm的文件编码设置;3)最简便的方法是在PyCharm右下角直接将GBK编码转换为UTF-8。第三种方法无需每次添加声明,可一劳永逸解决问题。
2025-09-22 21:17:43
695
原创 计算机视觉进阶教学之人脸检测
本文介绍了基于OpenCV的人脸检测与微笑识别实现方法。主要内容包括:1.使用Haar级联分类器进行人脸检测,通过计算图像灰度变化特征值实现;2.详细说明了级联分类器的工作原理和参数设置;3.给出Python代码示例,演示如何加载预训练模型并调用detectMultiScale方法进行检测;4.进一步展示在检测到人脸的基础上实现微笑识别,通过二次检测嘴巴区域判断微笑状态。文章还提到OpenCV提供的多种预训练分类器模型,可用于不同场景下的目标检测任务。
2025-09-22 11:29:05
1151
原创 教你如何简单在本地部署一个属于自己的大模型
本文介绍了如何通过Ollama和OpenWebUI快速搭建本地大模型博客系统。首先下载Ollama并运行模型,然后通过OpenWebUI提供可视化界面,支持多模型对话、语音输入、图像生成等功能。该系统完全离线运行,保障数据隐私,同时提供个性化定制选项。安装过程简单,支持Docker和pip等多种方式,适合没有编程基础的用户快速部署AI辅助博客,实现智能内容生成和问答功能。
2025-09-21 19:45:12
1248
原创 循环神经网络RNN与LSTM网络
本文介绍了循环神经网络(RNN)及其改进模型LSTM。RNN通过引入隐状态处理序列数据,能够捕捉时间依赖性,但存在梯度消失/爆炸问题。LSTM通过遗忘门、输入门和输出门结构,选择性地保留或遗忘信息,有效解决了RNN的长期依赖问题。RNN和LSTM都采用参数共享机制,但LSTM通过门控单元能更好地控制信息流,适用于处理长序列数据。
2025-09-19 19:23:09
1471
原创 计算机视觉进阶教学之DNN模块
OpenCV的DNN模块实现了深度神经网络推理功能,支持加载TensorFlow、Caffe等框架的预训练模型。该模块轻量、依赖少、易集成,通过blobFromImage函数预处理图像,转换为四维数组格式。文中演示了使用Torch格式的《星月夜》风格迁移模型,将输入图像转换为艺术风格,包括图像缩放、预处理、模型推理和结果处理完整流程。最后扩展实现了摄像头实时风格迁移功能,通过逐帧处理实现动态效果。整个方案展示了DNN模块在图像处理中的实际应用。
2025-09-17 16:19:05
1417
原创 计算机视觉进阶教学之背景建模与光流估计
计算机视觉中的动态场景分析依赖于背景建模和光流估计两大核心技术。背景建模通过帧差法、K近邻或高斯混合模型分离动态前景与静态背景,适用于运动检测和目标跟踪。光流估计则基于亮度恒定和小运动假设,计算像素点的瞬时速度,实现目标动态分析。两种技术在交通监控、无人机追踪和自动驾驶中有广泛应用,通过OpenCV等工具可实现实时处理,为动态场景理解提供技术支撑。
2025-09-15 21:27:17
1362
原创 计算机视觉案例分享之实时文档扫描
本文介绍了一种实时文档扫描系统的核心技术实现方案。该系统通过计算机视觉技术解决传统扫描仪便携性差、普通拍照易变形等问题。核心技术包括四个关键步骤:图像预处理(灰度化、高斯模糊、边缘检测)突出文档边缘;轮廓检测筛选四边形有效文档区域;透视矫正消除拍摄角度导致的变形;内容增强(二值化)提升文字清晰度。系统采用Python+OpenCV实现,包含摄像头初始化、实时图像处理和资源释放等功能模块,能快速将倾斜文档转换为标准电子版。该方案具有实时性强、处理高效的特点,适用于移动办公场景下的文档数字化需求。
2025-09-15 21:08:04
1265
原创 计算机视觉案例分享之答题卡识别
本文介绍了基于OpenCV的答题卡自动识别系统实现方法。系统通过图像预处理、轮廓检测、透视变换等技术,将倾斜的答题卡图像转换为正视图,再利用阈值处理和轮廓分析识别填涂选项,并与预设答案对比计算得分。关键步骤包括:1)图像灰度化、去噪和边缘检测;2)定位答题卡并进行透视校正;3)二值化处理检测选项轮廓;4)按题目顺序分析填涂情况;5)与标准答案比对并评分。该系统可有效实现标准化考试的自动阅卷功能,提高评卷效率和准确性。
2025-09-14 19:41:07
1336
原创 计算机视觉进阶教学之特征检测
本文介绍了计算机视觉中的三种关键技术:Harris角点检测、SIFT特征检测和指纹识别。Harris算法通过分析像素邻域的灰度变化检测角点;SIFT算法提取具有尺度不变性的局部特征,适用于图像匹配。指纹识别部分重点讲解了基于SIFT特征匹配的图像认证系统,包括特征提取、匹配筛选和认证判断三个核心步骤,并提供了优化方案来实现指纹与人名的匹配识别。文章通过具体代码示例演示了各项技术的实现过程,为计算机视觉学习者提供了实用的技术参考。
2025-09-12 17:06:47
1593
原创 计算机视觉进阶教学之图像投影(透视)变换
本文系统介绍了图像透视变换技术的原理与应用。透视变换通过3x3变换矩阵实现二维图像的视角转换,广泛应用于图像校正、虚拟现实等领域。文章以票据图像矫正为例,详细演示了OpenCV实现流程:包括轮廓检测、最大轮廓提取、四点透视变换等关键步骤。通过定义辅助函数实现坐标排序、宽高计算和图像缩放,最终将倾斜票据转换为正视图。该技术可有效解决图像视角变形问题,是计算机视觉领域的重要基础技术。
2025-09-11 20:35:27
1739
2
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅