- 博客(7)
- 收藏
- 关注
原创 离散数学特殊图
树有着许多重要的性质,例如有且仅有一条路径连接任意两个节点,每个非根节点都恰好有一个父节点。二分图是指一个无向图可以被分成两个独立的集合U和V,使得U中的节点只与V中的节点相连,V中的节点只与U中的节点相连。离散数学中的图不仅仅包含常规的无向图和有向图,还涵盖着许多特殊的图。这些特殊图的研究对于离散数学的发展和应用都有着重要的贡献。总之,在离散数学中,特殊图是非常重要的研究方向。通过对特殊图进行深入研究和分析,我们可以更好地理解和处理现实世界中存在的各种依赖关系和联系,为实际应用提供有力的支持。
2023-06-12 23:30:00 1727
原创 离散数学图
在离散数学中,图被定义为一个有限的非空集合V,以及一个有限的边集E,其中边是连接点在两个顶点之间的关系。(1)邻接矩阵:一个无向图的邻接矩阵是一个二维矩阵,它的行和列都表示图中的节点,而矩阵元素的值为0或1,表示相应节点之间是否连通。有向图的邻接矩阵也是类似的。重点:图的基本概念及分类、握手定理的理解与运用、邻接矩阵的理解与运用、通路与回路的理解与运用、图连通性的判断、连通分支的计算。(5)有向完全图:一个有向完全图是一个有向图,在图中的任意两个不同的顶点之间都有两条边相连,方向分别相反。
2023-06-12 21:00:00 281
原创 离散数学二元关系
例如,数学中的小于号就是一种偏序关系。二元关系 R 是定义在集合 S 上的,如果存在关系 R 包含于 S × S,即 R 是集合 S 的任意两个元素(a, b)之间的一个映射,则关系 R 是 S 上的一个二元关系。反对称性:如果对于集合 S 中的每个元素对 (a, b) 和 (b, a),当且仅当 a = b 时,它们才不同时是 R 中的元素对,则称 R 是反对称的。传递性:如果对于集合 S 中的每个元素对 (a, b) 和 (b, c),当 (a, c) 是 R 中的元素对时,则称 R 是传递的。
2023-06-12 20:00:00 1274
原创 离散数学特殊关系
例如,"国家和首都的对应关系"就是函数关系,其中S为所有的国家,T为所有的首都,R={(a, b) | a的首都是b}。(2)对于S中的每个元素x和y,如果(x, a)∈R且(x, b)∈R,则a=b。(1)b为B的极大元→存在b(b=B∧任意x(x=B∧b≤x→x=b))=1。(3)b为B的极小元→存在b(b∈B∧任意x(x∈B∧x≤b→x=b))=1。(1)b为B的最大元→存在b(b∈B∧任意x(x∈B→x≤b))=1。(3)b为B的最小元→存在b(b∈B∧任意x(x∈B→b≤x))=1。
2023-06-12 20:00:00 444
原创 离散数学谓词逻辑
例如,谓词“is blue”表示“蓝色的”,量化词“for all”表示“所有的”,则用“for all x, x is blue”这个表达式可以表示“所有的东西都是蓝色的”。例如,“for all x, P(x)→Q(x)”可以表示“对于所有 x,如果 x 满足条件 P,则 x 也满足条件 Q”。而“exists x, P(x)∧Q(x)”则表示“存在一个 x,它同时满足 P 和 Q ”,表达的是存在性量化的命题。(3)对G(x),利用UG规则引入Vy时,G(x)对y是自由的,才可以用y取代x。
2023-06-12 19:00:00 493
原创 离散数学命题逻辑
在命题逻辑中,我们可以使用各种符号来表示命题,比如用字母 P 和 Q 代表不同的命题,用符号 ¬ 代表否定(not)、符号 ∧ 代表合取(and),符号 ∨ 代表析取(or)等。(2)“=”是两个公式G与H之间的一种逻辑等价关系,G=H 表示在任意给定的解释1下,G的真值结果与日的真值结果相等。等价是指两个命题有相同的真值,可以用符号 <-> 表示,例如“2 + 2 = 4”和“4 = 2 + 2”是等价的。分配律:P∧(Q∨R) ≡ (P∧Q)∨(P∧R) 和 P∨(Q∧R) ≡ (P∨Q)∧(P∨R)
2023-06-12 18:00:00 697
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人