自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(22)
  • 收藏
  • 关注

原创 基于深度学习+NLP情感分析豆瓣电影爬虫数据可视化分析推荐系统(完整源码+详细文档+详细教程+万字详细论文等资料)

本项目旨在基于深度学习LSTM(Long Short-Term Memory)模型,基于python编程语言,Vue框架进行前后端分离,结合机器学习双推荐算法、scrapy爬虫技术、PaddleNLP情感分析以及可视化技术,构建一个综合的电影数据爬虫可视化+NLP情感分析推荐系统。通过该系统,用户可以获取电影数据、进行情感分析,并获得个性化的电影推荐,从而提升用户体验和满足用户需求。首先,项目将利用scrapy爬虫框架从多个电影网站上爬取丰富的电影数据,包括电影名称、类型、演员信息、剧情简介等。

2025-04-27 16:21:11 805

原创 基于深度学习知识图谱的大数据医疗知识知识图谱问答可视化系统(完整系统源码+数据库+万字详细文档+源码解析+视频详细部署教程讲解+万字论文+ppt等全资料)

节点类型的定义:checks, departments, diseases, drugs, foods, producers, symptoms: 这些都是不同类型的节点,代表了医学领域中的检查、科室、疾病、药品、食物、药品大类和症状等实体。实体属性的定义:name: 疾病的名称。desc: 描述疾病的属性。prevent: 预防措施。cause: 引起疾病的原因。easy_get: 疾病容易发生的原因或情况。cure_department: 治疗疾病的科室。cure_way: 治疗方式。

2025-04-27 16:19:21 811

原创 基于Python NLP情感分析微博舆情数据爬虫可视化分析系统+可视化+NLP情感分析+爬虫+机器学习(完整系统源码+数据库+详细部署文档+万字论文+详细开发文档等全资料)

Python语言、Flask框架、MySQL数据库、requests网络爬虫技术、scikit-learn机器学习、snownlp情感分析、词云、舆情分析3、项目说明1.开发工具本项目主要采用 PyCharm 开放平台利用 Python 语言来实现的。PyCharm 是一种PythonIDE,带有一整套可以帮助用户在使用 Python 语言开发时提高其效率的工具。2.数据获取。

2025-04-27 16:15:46 1342

原创 大数据招聘数据分析:基于Python网络爬虫的IT招聘就业岗位可视化分析推荐系统(完整系统源码+数据库+详细文档等全资料)

本项目旨在开发一个基于Python网络爬虫技术的IT招聘就业岗位可视化分析推荐系统。数据来源于Boss直聘招聘网站,采集到的各种岗位数据信息量合计在70万左右,数据精确真实可靠,本项目主要利用selenium、requests爬虫以及BeautifulSoup、numpy和Pandas等库进行数据的获取与分析处理。除此之外,项目还包括词云生成、数据分析、精准分析岗位算法推荐以及多维度薪资预测等功能,旨在为求职者提供全面的就业信息支持。

2025-04-27 16:13:56 695

原创 大数据TensorFlow深度学习——基于BERT+LSTM+CRF深度学习识别模型医疗知识图谱问答可视化系统(完整系统源码+PPT+详细开发文档+论文+源码解析等全资料)

知识图谱是将知识连接起来形成的一个网络。由节点和边组成,节点是实体,边是两个实体的关系,节点和边都可以有属性。知识图谱除了可以查询实体的属性外,还可以很方便的从一个实体通过遍历关系的方式找到相关的实体及属性信息。BERT是一种基于Transformer 架构的预训练语言模型,能够捕捉双向上下文信息。BERT 模型在大规模语料上进行预训练,然后可以通过微调来适应特定任务,BERT 可用于处理输入文本,提取丰富的语义信息。它可以用于文本的编码和表征学习,以便更好地理解医学问答中的问题和回答。

2025-04-27 16:09:51 1022

原创 基于python机器学习算法的农作物产量可视化分析预测系统(完整系统源码+数据库+详细文档+论文+详细部署教程+答辩PPT等全资料)

基于集成学习算法XGBoost农作物产量可视化分析预测系统,旨在帮助农民和相关从业者更好地预测农作物产量,以优化农业生产。该系统主要包括四个功能模块。首先,农作物数据可视化模块利用Echarts、Ajax、Flask、PyMysql技术实现了可视化展示农作物产量相关数据的功能。其次,产量预测模块使用pandas、numpy等技术,通过对气象和农作物产量关系数据集的分析和训练,实现了对农作物产量的预测功能。该模块可以对当前或未来某一时间段的农作物产量进行预测,并提供预测结果的可视化展示。

2025-04-27 15:59:46 1089

原创 基于Python 机器学习算法全国气象数据采集可视化分析预测系统(完整系统源码+数据库+详细文档+万字论文+详细部署教程等全资料)

在信息科技蓬勃发展的当代,我们推出了一款基于Python机器学习算法全国气象数据采集可视化分析预测系统。随着气候变化越发引起全球关注,精准的气象数据和可视化展示变得愈发重要。该系统采用先进的技术和创新的功能,满足用户对实时气象信息和历史天气数据的需求,助力公众、企业和政府做出更明智的决策。在技术层面,我们充分利用Python网络爬虫技术,从中国天气网等权威数据源获取全国实时天气数据历史天气数据,确保数据的及时性和准确性。通过数据清洗和MySQL数据库存储,我们保证了数据的一致性和可靠性。

2025-04-27 15:43:53 1412

原创 基于k-means聚类算法+NLP微博舆情数据爬虫可视化分析推荐系统(完整系统源码+数据库+详细开发文档+详细部署文档+项目PPT等资料)

当代社会,微博等社交媒体平台已成为人们获取信息、表达观点的重要渠道,其上的舆情数据蕴含了丰富的信息和价值。为了有效地利用这些数据,本项目设计并实现了一套基于Python的微博舆情数据爬虫可视化分析系统。该系统包括了多个模块,涵盖了从数据获取到可视化呈现的全过程。利用requests库实现了高效的微博数据爬取功能,能够按需获取特定话题或用户的微博信息。其次,通过热词统计、微博舆情统计等功能,对爬取到的数据进行了综合分析,揭示了舆情的热点和趋势。

2025-04-27 15:36:10 890

原创 大数据可视化分析项目:基于Python豆瓣电影数据可视化分析系统的设计与实现(完整系统源码+数据库+详细文档+论文+答辩PPT+部署教程等资料)

本项目旨在通过对豆瓣电影数据进行综合分析与可视化展示,构建一个基于Python的大数据可视化系统。通过数据爬取收集、清洗、分析豆瓣电影数据,我们提供了一个全面的电影信息平台,为用户提供深入了解电影产业趋势、影片评价与演员表现的工具。项目的关键步骤包括数据采集、数据清洗、数据分析与可视化展示。首先,我们使用爬虫技术从豆瓣电影网站获取丰富的电影数据,包括电影基本信息、评分、评论等存储到Mysql数据库。然后,通过数据清洗与预处理,确保数据的质量与一致性,以提高后续分析的准确性。

2025-04-23 00:11:45 737

原创 基于Django快递物流管理可视化分析系统(完整系统源码+数据库+详细开发文档+万字详细论文+答辩PPT+详细部署教程等资料)

随着电子商务行业的蓬勃发展,物流管理成为了整个供应链中至关重要的一环。本毕设旨在利用Django框架,设计并实现一个快递物流管理可视化系统,旨在提升物流运营效率和服务质量。该系统将涵盖快递信息录入、订单追踪、运输路线规划、配送员管理等功能模块,通过直观的可视化界面展示物流数据,帮助管理人员实时监控货物流转情况,优化配送路径,提高配送效率。系统还将包括用户端界面,方便用户查询订单状态、评价配送服务,提升用户体验。

2025-04-23 00:08:20 911

原创 深度学习识别:基于Tensorflow深度学习的神经网络CNN算法垃圾分类识别系统(系统源码+数据库+详细开发文档+详细部署文档等)

本项目旨在利用大数据和深度学习技术,构建一个基于 TensorFlow 深度学习的神经网络 CNN(Convolutional Neural Network)算法垃圾分类识别系统,以实现自动化高效的垃圾分类。该系统将利用大数据集进行训练,通过深度学习模型提取垃圾图像的特征,从而实现对垃圾进行分类。具体而言,本项目将分为以下几个阶段:数据收集与预处理:收集包括各种类型垃圾的图像数据,并对数据进行预处理,包括图像尺寸统一化、去除噪声等操作,以便于后续模型训练。

2025-04-23 00:03:01 713

原创 豆瓣数据分析:基于python豆瓣电影爬虫数据评论情感分析可视化分析推荐系统(完整源码+数据库+详细开发文档+万字论文)

Django(发音为"jan-go")是一个高级的Python web框架,它鼓励快速开发和干净、可重用的设计。Django 遵循经典的 Model-View-Controller(MVC)软件设计模式,但采用了稍微不同的结构。在Django中,这个模式被称为Model-View-Template(MVT)。负责数据存储和检索。定义数据模型,通过对象关系映射(ORM)将数据模型映射到数据库表。处理用户请求,从模型中检索数据,并将数据传递给模板进行渲染。定义如何呈现数据。

2025-04-23 00:00:06 1065

原创 基于neo4j知识图谱+flask的大数据医疗领域知识问答系统(完整源码+全源码解析+开发文档+视频讲解等资料)

基于知识图谱+flask的KBQA医疗问答系统基于医疗方面知识的问答,通过搭建一个医疗领域知识图谱,并以该知识图谱完成自动问答与分析服务。基于知识图谱+flask的KBQA医疗问答系统以neo4j作为存储,本系统知识图谱建模使用的最大向前匹配是一种贪心算法,从句首开始匹配,每次选择最长的词语。由于只需一次遍历,因此在速度上相对较快。算法相对简单,容易实现和理解,不需要复杂的数据结构。对于中文文本中大部分是左向的情况,最大向前匹配通常能够较好地切分。

2025-04-29 22:32:26 1105

原创 基于hyperleger fabric区块链的校园化妆品交易平台搭建(完整源码+详细文档+解析讲解等全资料)

一、大数据与区块链解决方案概述选题背景:目前不少同学在校园里进行二手交易没有一个大众认可的平台,很多都是私下交易,但会存在很多虚假交易,甚至出现诈骗事件,没有一个让校园同学认可放心的二手化妆品交易平台,基于这个交易问题,我们将校园二手化妆品交易与区块链技术结合来处理交易存在的问题,给校园内学生提供提供一个安全、公开、方便、美观的交易平台,让学生在校园交易的放心,买得放心,用的安心。不但可以交易平台的资产也可以添加我的售卖,自己成为卖家。采用区块链技术架构的优点:区块链采用了分布式核算和存储,不存在中心

2025-04-27 16:17:41 828

原创 基于python豆瓣电影爬虫数据可视化分析推荐系统(完整系统源码+数据库+详细文档+论文+详细部署教程等全资料)

Django(发音为"jan-go")是一个高级的Python web框架,它鼓励快速开发和干净、可重用的设计。Django 遵循经典的 Model-View-Controller(MVC)软件设计模式,但采用了稍微不同的结构。在Django中,这个模式被称为Model-View-Template(MVT)。负责数据存储和检索。定义数据模型,通过对象关系映射(ORM)将数据模型映射到数据库表。处理用户请求,从模型中检索数据,并将数据传递给模板进行渲染。定义如何呈现数据。

2025-04-27 16:12:01 1025

原创 【无标题】基于Python机器学习随机森林算法+XGBoost的算法农业数据可视化分析预测系统(完整系统源码+数据库+详细文档+论文+答辩PPT+详细部署教程等全资料)

基于python机器学习随机森林算法+XGBoost的算法农业数据可视化分析预测系统,旨在帮助农民和相关从业者更好地预测农作物产量,以优化农业生产。该系统主要包括四个功能模块。首先,农作物数据可视化模块利用Echarts、Ajax、Flask、PyMysql技术实现了可视化展示农作物产量相关数据的功能。其次,产量预测模块使用pandas、numpy等技术,通过对气象和农作物产量关系数据集的分析和训练,实现了对农作物产量的预测功能。

2025-04-27 16:08:20 689

原创 基于SpringBoot+Vue学科竞赛管理系统(完整源码+详细文档+论文+部署文档等全资料)

1.1 研究背景随着计算机技术的发展以及计算机网络的逐渐普及,互联网成为人们查找信息的重要场所,二十一世纪是信息的时代,所以信息的管理显得特别重要。因此,使用计算机来管理基于SpringBoot+Vue学科竞赛管理系统的相关信息成为必然。开发合适的基于SpringBoot+Vue学科竞赛管理系统,可以方便管理人员对基于SpringBoot+Vue学科竞赛管理系统的管理,提高信息管理工作效率及查询效率,有利于更好的为人们服务。1.2研究目的。

2025-04-27 16:06:22 342

原创 基于python大数据机器学习旅游数据分析可视化推荐系统(完整系统+开发文档+部署教程+文档等全资料)

TF-IDF是一种统计方法,用以评估一字词对于一个文件集或一个语料库中的其中一份文件的重要程度。字词的重要性随着它在文件中出现的次数成正比增加,但同时会随着它在语料库中出现的频率成反比下降。TF-IDF加权的各种形式常被搜索引擎应用,作为文件与用户查询之间相关程度的度量或评级。除了TF-IDF以外,因特网上的搜索引擎还会使用基于链接分析的评级方法,以确定文件在搜寻结果中出现的顺序TF-IDF实际上是:TF * IDF。

2025-04-27 16:04:21 618

原创 基于python房屋爬虫数据可视化分析推荐系统(完整源码+数据库+详细文档等全资料)

前端:html,css,js,Echats,百度地图后端:Django数据库:Mysql推荐算法:(1、ItemCF 2、UserCF)爬虫:requests地图API接口:百度地图API。

2025-04-27 15:50:24 773

原创 大数据算法岗位分析推荐:基于Python的招聘大数据爬虫可视化分析推荐系统(完整系统源码+数据库+详细开发文档+万字论文+详细部署教程等全资料)

系统涵盖了多个关键功能,包括使用selenium库进行数据爬取、爬虫调度、以及在前端页面上选择不同的城市、爬取页数和职位关键字进行数据爬取。此外,系统还包括数据管理和可视化功能,能够对薪资待遇、学历分布和职位关键字进行可视化分析。为了进一步提升系统的智能化,使用了机器学习算法中的协同过滤来实现selenium功能。具体而言,该功能支持用户设置求职意向,并根据用户的需求为其推荐相关职位,并将推荐结果展示在求职列表中。在后台管理方面,系统提供了用户设置和管理功能,方便用户自定义各项参数以及管理已爬取的数据。

2025-04-27 15:40:54 558

原创 农产品数据分析:基于Python机器学习算法农产品爬虫可视化分析预测系统(完整源码+数据库+详细开发文档+详细部署文档+详细万字论文)

本研究致力于设计并实现了一款基于Python的农产品可视化分析预测系统,系统主要利用requests库进行网络数据爬取,BeautifulSoup库解析网页内容,从惠农网获取相关农产品信息。系统功能包括数据价格分析、管理查询等,用户可以根据农产品名称进行机器学习模型的训练与预测,采用sklearn中的多元线性回归模型进行未来一周农产品价格的预测,并通过可视化分析展示结果。此外,系统还具备flask_admin后台数据管理功能,管理员可以对数据进行增删改查及修改用户权限。

2025-04-23 00:06:15 1210

原创 大数据房源数据分析:基于Django机器学习算法房源可视化分析推荐系统的设计与实现(完整系统源码+数据库+详细文档+论文+部署教程等资料)

前端:html,css,js,Echats,百度地图后端:Django数据库:Mysql推荐算法:(1、ItemCF 2、UserCF)爬虫:requests地图API接口:百度地图API。

2025-04-22 23:56:35 1026

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除