mcp教程(python)

首先我们先知道mcp底层会发生什么

底层发生了什么(以windsurf为例)

当你提出问题时:

  1. client 将你的问题发送给模型 client可以是市场上支持使用mcp的软件也可以是自己写的client。

  2. 模型分析可用的 tools 并决定使用哪些 tool 将相关设置设置好模型自己会分析

  3. client 通过 MCP server 执行选择的 tool 运行你写的,或者下载的mcp server

  4. 结果被发回给 模型

  5. 模型制定自然语言响应

  6. 响应显示给你!

一,依赖安装

系统要求

  • 已安装 Python 3.10 或更高版本。

  • 你必须使用 Python MCP SDK 1.2.0 或更高版本。

建议先创建虚拟环境 可以使用uv 也可以使用canda

首先,让我们安装 并设置我们的 Python 项目和环境:uv

# 为我们的项目创建一个新 directory
uv init weather
cd weather

# 创建 virtual environment 并激活它
uv venv
.venv\Scripts\activate

# 安装依赖
uv add mcp[cli] httpx

# 创建我们的 server file
new-item weather.py

二、服务器的搭建

导入包并设置实例

from typing import Any
import httpx
from mcp.server.fastmcp import FastMCP

# 初始化 FastMCP server
mcp = FastMCP("weather")

# Constants
NWS_API_BASE = "https://api.weather.gov"
USER_AGENT = "weather-app/1.0"

FastMCP class 使用 Python type hints 和 docstrings 来自动生成 tool definitions,从而轻松创建和维护 MCP tools。

接下来,让我们添加 helper functions,用于查询和格式化来自 National Weather Service API 的数据:

async def make_nws_request(url: str) -> dict[str, Any] | None:
    """向 NWS API 发送请求,并进行适当的错误处理。"""
    headers = {
        "User-Agent": USER_AGENT,
        "Accept": "application/geo+json"
    }
    async with httpx.AsyncClient() as client:
        try:
            response = await client.get(url, headers=headers, timeout=30.0)
            response.raise_for_status()
            return response.json()
        except Exception:
            return None

def format_alert(feature: dict) -> str:
    """将警报 feature 格式化为可读的字符串。"""
    props = feature["properties"]
    return f"""
事件: {props.get('event', 'Unknown')}
区域: {props.get('areaDesc', 'Unknown')}
严重性: {props.get('severity', 'Unknown')}
描述: {props.get('description', 'No description available')}
指示: {props.get('instruction', 'No specific instructions provided')}
"""

功能解析:

  • 异步请求: 使用 httpx.AsyncClient 进行异步 HTTP 请求,这意味着程序可以在等待响应时执行其他任务,提高效率。

  • 请求头设置:

    • User-Agent: 标识请求来源,遵循 NWS API 的使用政策。

    • Accept: 指定期望的响应格式为 GeoJSON,这是 NWS API 提供地理数据的标准格式。

  • 错误处理:

    • timeout=30.0: 设置请求超时时间为 30 秒,防止长时间等待无响应的请求。

    • response.raise_for_status(): 如果 HTTP 状态码不是 200(成功),会抛出异常。

    • try-except 块捕获所有异常并返回 None,确保函数不会因异常而崩溃。

def format_alert(feature: dict) -> str:
    """将警报 feature 格式化为可读的字符串。"""
    props = feature["properties"]
    return f"""
事件: {props.get('event', 'Unknown')}
区域: {props.get('areaDesc', 'Unknown')}
严重性: {props.get('severity', 'Unknown')}
描述: {props.get('description', 'No description available')}
指示: {props.get('instruction', 'No specific instructions provided')}
"""

功能解析:

  • 数据提取:

    • feature["properties"]: 从 GeoJSON 特性中提取属性字典,包含警报的详细信息。

  • 格式化输出:

    • 使用字典的 .get() 方法安全地获取值,避免因键不存在而引发 KeyError

    • 为每个字段提供默认值(如 "Unknown" 或 "No description available"),确保输出完整。

  • 信息内容:

    • event: 警报类型(如 "Severe Thunderstorm Warning")。

    • areaDesc: 受影响区域的描述。

    • severity: 严重程度(如 "Severe" 或 "Moderate")。

    • description: 警报详细描述。

    • instruction: 建议采取的行动。

Tool execution handler 负责实际执行每个 tool 的逻辑。

@mcp.tool()
async def get_alerts(state: str) -> str:
    """获取美国州的天气警报。

    Args:
        state: 两个字母的美国州代码(例如 CA、NY)
    """
    url = f"{NWS_API_BASE}/alerts/active/area/{state}"
    data = await make_nws_request(url)

    if not data or "features" not in data:
        return "无法获取警报或未找到警报。"

    if not data["features"]:
        return "该州没有活跃的警报。"

    alerts = [format_alert(feature) for feature in data["features"]]
    return "\n---\n".join(alerts)

@mcp.tool()
async def get_forecast(latitude: float, longitude: float) -> str:
    """获取某个位置的天气预报。

    Args:
        latitude: 位置的纬度
        longitude: 位置的经度
    """
    # 首先获取预报网格 endpoint
    points_url = f"{NWS_API_BASE}/points/{latitude},{longitude}"
    points_data = await make_nws_request(points_url)

    if not points_data:
        return "无法获取此位置的预报数据。"

    # 从 points response 中获取预报 URL
    forecast_url = points_data["properties"]["forecast"]
    forecast_data = await make_nws_request(forecast_url)

    if not forecast_data:
        return "无法获取详细预报。"

    # 将 periods 格式化为可读的预报
    periods = forecast_data["properties"]["periods"]
    forecasts = []
    for period in periods[:5]:  # 仅显示接下来的 5 个 periods
        forecast = f"""
{period['name']}:
温度: {period['temperature']}°{period['temperatureUnit']}
风: {period['windSpeed']} {period['windDirection']}
预报: {period['detailedForecast']}
"""
        forecasts.append(forecast)

    return "\n---\n".join(forecasts)

最后,让我们初始化并运行 server:

if __name__ == "__main__":
    # 初始化并运行 server
    mcp.run(transport='stdio')

三、windsurf(编程软件)配置。

项目运行需要魔法

将上面所有代码粘贴进创建的文件夹内。

点击对话框边上的

会进入一个js文件,然后进行配置。配置参数如下,使用uv运行,修改自己的文件路径。

点击refresh就会显示mcp文件数量,在对话框输入相关消息模型自动会获取天气信息。如下图:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值