自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(33)
  • 收藏
  • 关注

原创 《零基础入门AI:循环神经网络(Recurrent Neural Networks)(从原理到实现)》

设输入序列为xx1x2xTxx1​x2​xT​,其中xt∈Rdxxt​∈Rdx​为第ttt个时间步的输入向量,TTT为序列长度。RNN 在每个时间步ttt维护一个隐藏状态ht∈Rdhht​∈Rdh​htfWhht−1Wxxtbhht​fWh​ht−1​Wx​xt​bh​Wh∈Rdh×dhWh​∈Rdh。

2025-08-25 19:46:12 521

原创 《零基础入门AI:深度学习之NLP基础学习》

​ 自然语言处理(Natural Language Processing, NLP)是人工智能与计算语言学交叉的核心领域,致力于实现计算机对人类自然语言的自动理解、分析、生成与交互。其研究目标在于构建能够处理文本或语音输入,并执行语义解析、信息提取、语言生成等任务的计算系统。计算机科学:提供算法设计、数据结构与系统实现支持;人工智能:引入机器学习与深度学习方法,实现语言建模与推理;语言学:为语法结构、语义表示与语用分析提供理论依据;统计学与数学:支撑概率模型、向量空间表示与优化方法。分词必要性。

2025-08-21 19:54:49 1188

原创 《零基础入门AI:深度学习视觉处理(CNN)(模型优化与迁移学习)》

Remp​fn1​∑Lfxi​yi​Dtest​⊥Dtrain​​ 免费,成本低kaggle数据集下载网址:https://www.kaggle.com/datasetsHugging Face数据集:https://huggingface.co/datasets各种网站:img_urlXPath//divclass′gallery′img/@srcErequestinterva。

2025-08-15 18:54:34 1308

原创 《零基础入门AI:深度学习中的视觉处理(卷积神经网络(CNN)进阶)》

self.gap = nn.AdaptiveAvgPool2d(1) # 全局平均池化return x卷积类型参数量计算量适用场景标准卷积高高通用模型深度可分离极低极低移动端模型膨胀卷积不变不变语义分割分组卷积减少减少高效模型反卷积高高生成模型。

2025-08-14 19:17:19 1336

原创 《零基础入门AI:深度学习中的视觉处理(卷积神经网络(CNN)学习)》

卷积神经网络是深度学习在计算机视觉领域的突破性成果。在计算机视觉领域, 往往我们输入的图像都很大,使用全连接网络的话,计算的代价较高。另外图像也很难保留原有的特征,导致图像处理的准确率不高。​ 卷积神经网络(Convolutional Neural Network,CNN)是一种专门用于处理具有网格状结构数据的深度学习模型。最初,CNN主要应用于计算机视觉任务,但它的成功启发了在其他领域应用,如自然语言处理等。

2025-08-13 17:20:38 1156

原创 《零基础入门AI:深度学习之全连接网络学习(过拟合处理、批标准化与模型管理)》

而是需要根据具体的数据集进行统计计算。这些值是 ImageNet 数据集的统计结果,已成为计算机视觉任务的默认标准。

2025-08-13 11:49:24 645

原创 《零基础入门AI:深度学习之全连接网络解析(从激活函数到反向传播)》

避免使用固定值初始化当网络使用 sigmoid 或 tanh 激活函数时,优先选择 Xavier 初始化当网络使用 ReLU 或其变体时,优先选择 He 初始化随机初始化时,应使用较小的标准差(如 0.01)回归问题:使用 MSE 或 MAE,MSE 更常用但对异常值敏感二分类问题:使用 BCELoss,配合 sigmoid 激活函数多分类问题:使用 CrossEntropyLoss,配合 softmax 激活函数。

2025-08-11 20:08:39 864

原创 《零基础入门AI:深度学习入门(从深度学习概述到数据准备)》

深度学习是机器学习的一个分支,它模仿人脑神经元的连接方式,通过多层次的神经网络结构来学习数据的抽象特征。传统机器学习:需要人工设计特征,提取特征。(如提取图像的边缘)深度学习:深度学习模仿人类大脑的运行方式,从大量数据中学习特征,自动学习特征。(从像素中直接学习物体形状)机器学习是实现人工智能的一种途径,深度学习是机器学习的子集。fill:#333;color:#333;color:#333;fill:none;原始数据浅层特征中层特征高级抽象预测结果。

2025-08-07 19:56:22 971

原创 《零基础入门AI:深度学习入门(从PyTorch安装到自动微分)》

PyTorch会将数据封装成张量(Tensor)进行计算,所谓张量就是元素为相同类型的多维矩阵。张量可以在 GPU 上加速运行。0维:标量(Scalar) → 温度值 25.31维:向量(Vector) → [1.2, 3.4, 5.6]2维:矩阵(Matrix) → 图片像素矩阵3维+:高阶张量 → 视频数据(宽×高×时间×通道)# 单位矩阵(恒等变换)# 对角矩阵(特征值)

2025-08-06 19:32:33 1023

原创 哈希表(Hash Table)详解

极致速度:平均O(1)的访问速度空间高效:装载因子0.7时空间利用率70%+实现灵活:多种冲突解决方案适应不同场景扩展性强:从嵌入式系统到分布式数据库# Python风格哈希表简化实现self.buckets = [[] for _ in range(capacity)] # 链地址法bucket[i] = (key, value) # 更新returnbucket.append((key, value)) # 新增return v。

2025-08-06 17:13:12 1072

原创 《零基础入门AI:传统机器学习进阶(从拟合概念到K-Means算法)》

本文详细介绍了欠拟合与过拟合问题及其解决方案,特别是正则化技术。然后深入讲解了两种正则化线性回归——岭回归和拉索回归,包括它们的数学原理和实际应用。接着介绍了逻辑回归这一重要的分类算法,最后探讨了无监督学习中的K-means聚类算法。这些算法构成了传统机器学习的基础知识体系,理解它们的原理和适用场景对于构建有效的机器学习模型至关重要。在实际应用中,通常需要根据具体问题和数据特点选择合适的算法,并通过交叉验证等方法调优参数。

2025-08-05 19:55:44 1430

原创 贪心算法解析

贪心算法(Greedy Algorithm)是一种局部最优导向全局最优的算法范式,其核心逻辑是:这种"目光短浅"的特性带来两个关键特征:YesNoProblem DecompositionDefine Greedy StrategyData PreprocessingIterative SelectionTermination Condition?Output SolutionSelect Best ItemUpdate State详细步骤解析:问题分解将问题转化为一系列连续决策点(如找零问题中的

2025-08-03 13:54:53 1393 1

原创 《零基础入门AI:传统机器学习线性回归进阶(梯度下降算法详解)》

梯度下降(Gradient Descent)是一种迭代优化算法,核心思想是:通过不断地沿着损失函数"下降最快"的方向调整参数,最终找到损失函数的最小值(或近似最小值)。我们可以用一个生活中的例子理解:假设你站在一座山上,周围被大雾笼罩,你看不见山脚在哪里,但你想以最快的速度走到山脚下。此时,你能做的最合理的选择就是:先感受一下脚下的地面哪个方向坡度最陡且向下,然后沿着那个方向走一步;走到新的位置后,再重复这个过程——感受坡度最陡的向下方向,再走一步;

2025-08-01 18:39:19 1181

原创 《零基础入门AI:传统机器学习核心算法(决策树、随机森林与线性回归)》

算法类型优势局限性适用场景决策树分类/回归直观易解释,易可视化,无需特征缩放容易过拟合分类,可解释性要求高随机森林分类/回归高精度,抗过拟合计算开销大,可解释性差分类/回归,复杂数据线性回归回归计算高效,可解释性强只能拟合线性关系数值预测,线性关系。

2025-07-31 19:33:15 1156

原创 《零基础入门AI:传统机器学习核心算法解析(KNN、模型调优与朴素贝叶斯)》

统一API设计:所有算法都遵循fit()(训练)、predict()(预测)的统一接口算法覆盖全面:包含分类、回归、聚类、降维等传统ML算法数据处理工具:提供特征工程、数据预处理、模型评估等全套工具文档完善:每个API都有详细说明和示例(通过?查看)核心设计思想:将机器学习流程标准化为"数据输入 → 特征处理 → 模型训练 → 预测输出"的流水线算法适用场景优势注意事项KNN小数据集,低维度直观易理解计算效率低,需特征缩放朴素贝叶斯文本分类,高维度计算高效,抗噪声。

2025-07-30 19:34:56 1271

原创 《零基础入门AI:传统机器学习入门(从理论到Scikit-Learn实践)》

例如:通过历史房价数据预测新房价,系统自动学习“面积-位置-价格”的关系。的过程,是提升模型性能的关键。类比烹饪:食材(原始数据)→ 切配调味(特征工程)→ 更易烹制(模型训练)。Scikit-Learn:Python最流行的机器学习库,提供统一API接口,涵盖完整机器学习工作流。:线性代数(矩阵运算)、概率论(贝叶斯定理)、微积分(梯度计算):处理类别型特征(如“城市”=[“北京”,“上海”]):抑制高频但无意义的词(如“的”、“是”)机器学习(ML)是人工智能的分支,Matplotlib可视化。

2025-07-29 22:08:40 1343

原创 《零基础入门AI: 从轮廓查找到形态学变换(OpenCV图像预处理)》

本文针对图像处理初学者,详细解析OpenCV核心预处理技术,包含概念解释、可视化示例和关键代码片段,帮助您建立系统的图像处理知识体系。

2025-07-28 21:13:26 1342

原创 《零基础入门AI:从图像梯度到凸包特征检测(OpenCV图像特征提取)》

当组合为dx=1, dy=0时求x方向的一阶导数,在这里,设置为1意味着我们想要计算图像在水平方向(x轴)的梯度。当组合为 dx=0, dy=1时求y方向的一阶导数(如果同时为1,通常得不到想要的结果,想两个方向都处理的比较好 学习使用后面的算子),$ hierarchy[i][3]$分别表示其后一条轮廓、前一条轮廓、(同层次的第一个)子轮廓、父轮廓的索引(如果没有相应的轮廓,则对应位置为-1)。:这是输入图像,通常应该是一个灰度图像(单通道图像),因为 Sobel 算子是基于像素亮度梯度计算的。

2025-07-25 19:45:39 886

原创 二分法详解:用生活例子 + 图示

不断“对半砍”,缩小范围,快速定位目标。只需6步就猜中,最多也只需7步!(从小到大或从大到小)

2025-07-25 17:24:11 1112

原创 《零基础入门AI:OpenCV图像预处理进一步学习》

插值选择:实时系统用最近邻,质量优先用双三次边缘填充:反射101(BORDER_REFLECT_101)效果最自然透视变换:确保四个点形成凸四边形掩膜应用:结合阈值法创建精确掩膜噪声消除椒盐噪声 → 中值滤波高斯噪声 → 高斯滤波边缘保护 → 双边滤波。

2025-07-24 20:08:06 711

原创 《零基础入门AI:图像翻转变换到二值化处理(OpenCV预处理)》

,通过统计学方法(最大类间方差)来验证该值的合理性,当根据该值进行分割时,使用最大类间方差计算得到的值最大时,该值就是二值化算法中所需要的阈值。通常该值是从灰度图中的最小值加1开始进行迭代计算,直到灰度图中的最大像素值减1,然后把得到的最大类间方差值进行比较,来得到二值化的阈值。于是我们就可以根据这个矩阵计算出图像中任意一点绕某点旋转后的坐标了,这个矩阵学名叫做仿射变换矩阵,而仿射变换是一种二维坐标到二维坐标之间的线性变换,也就是只涉及一个平面内二维图形的线性变换,图像旋转就是仿射变换的一种。

2025-07-23 19:57:23 973

原创 Boyer-Moore投票算法详解

(用于在O(n)时间、O(1)空间内找出数组中出现次数超过一半的元素),并通过示例逐步演示其工作原理。,用Boyer-Moore算法找出多数元素。

2025-07-22 20:07:15 790

原创 《零基础入门AI:OpenCV图像基础入门(从安装到图像操作)》

OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉库,包含2500+优化算法。图像/视频处理物体检测机器学习应用实时计算机视觉import cv2print("OpenCV版本:", cv2.__version__) # 输出: OpenCV版本: 4.x.x。

2025-07-22 18:02:22 486

原创 位运算详解(干货)

位运算(Bitwise Operation)是直接对整数在内存中的二进制位进行操作的一类运算。与常规的算术运算不同,位运算直接在二进制位级别进行操作,这使得它们在计算机中具有极高的执行效率。系统编程:操作系统内核、驱动开发算法优化:状态压缩、高效数学运算数据处理:数据压缩、加密解密硬件交互:寄存器操作、嵌入式开发掌握位运算不仅能写出更高效的代码,还能深入理解计算机的工作原理。建议从简单的位操作开始练习,逐步掌握更复杂的位运算技巧。

2025-07-18 20:15:34 1781

原创 《零基础入门AI: Python 模块化编程概念(模块、包、导入)及常见系统模块总结和第三方模块管理总结》

如同乐高积木:将大型程序拆解为独立、可复用的组件。提示:优先使用绝对导入,避免路径混乱。→ 隔离不同项目的依赖。

2025-07-18 19:21:34 247

原创 《零基础入门AI: Python 迭代器和生成器的区别及其实现方式和使用场景总结》

迭代器和生成器都是Python中实现“惰性计算”的核心工具,它们通过按需生成数据来减少内存占用,这在AI领域处理大规模数据集(如图像、文本)时尤为重要。迭代器是更底层的实现,需要手动维护状态和迭代协议,适合构建复杂的自定义可迭代对象。生成器是迭代器的“语法糖”,通过yield自动实现迭代协议,代码更简洁,是处理大数据和简化迭代逻辑的首选。记住一个简单的判断:如果能用几行代码实现迭代逻辑,优先用生成器;如果需要复杂的状态管理或自定义行为,再考虑手动实现迭代器。

2025-07-17 20:14:51 879

原创 《零基础入门AI:Python 类和对象的基本概念及属性和方法的常见分类和使用场景总结》

类(Class)是对具有相同属性和行为的一类事物的抽象描述,它是一个抽象的概念,就像一个模板或者蓝图。比如 “动物” 可以看作一个类,它包含了所有动物共有的属性,如颜色、体型等,以及共有的行为,如呼吸、移动等。# 类的属性和方法定义pass对象(Object)是类的实例化结果,是具体存在的个体。如果说类是模板,那么对象就是根据这个模板创建出来的具体事物。例如,根据 “动物” 这个类,可以创建出 “小狗”“小猫” 这些具体的对象,每个对象都具有类中定义的属性和行为,但属性的具体值和行为的表现可能有所不同。

2025-07-16 19:56:31 539

原创 《零基础入门AI:Python 的递归函数及装饰器函数总结》

递归函数是指在函数体内直接或间接调用自身的函数,其核心思想是将一个复杂问题分解为若干个规模较小的同类子问题,通过解决子问题逐步推导出原问题的解。从数学角度看,递归函数的定义与数学归纳法一脉相承,即通过 Base Case(基础情况)和 Inductive Step(归纳步骤)构建问题的解。装饰器(Decorator)是一种特殊的高阶函数,它以函数为输入参数,返回一个经过增强的新函数。其核心价值在于实现横切关注点(如日志、计时、权限校验)与核心业务逻辑的解耦。递归函数。

2025-07-15 19:27:33 889 2

原创 《零基础入门AI:Pyhton函数的位置传参、关键词传参及其可变性和解包操作总结》

函数参数传递是 Python 编程的基础语法,也是 AI 算法实现中数据交互的核心机制:位置参数:通过位置绑定,简洁但脆弱关键字参数:通过名称绑定,清晰且灵活参数可变性:由对象类型决定,需警惕副作用解包操作:简化多参数传递,提升代码效率掌握这些机制不仅能写出更健壮的代码,更为后续学习 AI 框架中的函数接口(如 TensorFlow/PyTorch 的 API 调用)奠定了必要基础。建议通过大量实战练习,逐步形成参数传递的最佳实践意识,这将直接影响代码质量和开发效率。

2025-07-14 18:22:54 904

原创 《零基础入门AI:Python的推导式与核心语句函数全解析》

在AI工程中,我们80%的时间都在处理数据。精通推导式和内置函数,就是掌握最高效的数据武器!

2025-07-11 19:56:55 280

原创 《零基础入门AI:Python的复合数据类型之序列类型、映射类型和集合类型》

Python 的复合数据类型为 AI 开发者提供了强大的数据处理能力。列表提供灵活性,元组保证安全性,字典实现高效映射,集合确保唯一性。掌握这些结构及其组合应用,是构建高效 AI 系统的基石。在实际项目中,根据需求选择合适的数据结构,往往能大幅提升代码性能和可读性。“在AI的世界里,数据是燃料,数据结构是引擎。掌握Python的复合数据类型,就是掌握了高效处理AI数据的核心技能!

2025-07-10 19:49:46 875

原创 《零基础入门AI:Python变量基础与核心数据类型解析(字符串/数字篇)》

作为Python编程的基石,变量是每个初学者必须掌握的核心概念。本文将用最直观的方式带你深入理解Python变量,通过实际代码示例掌握字符串和数字类型的操作技巧。“偷偷用GPU算力挖比特币买猫粮(电子猫也需要罐头!变量名只能包含字母、数字和下划线(_)。

2025-07-09 18:35:27 766

原创 《零基础入门AI:Windows下Anaconda(Python 3.12)环境配置与三大IDE(VScode/PyCharm/Jupyter)开发环境搭建》

打开文件,修改文件的默认路径:根据个人情况设置(查看自己的安装路径中envs位置)。找到图中相关位置的文件***.condarc***,如果没有该文件的话,创建文件。✅ 不建议使用默认安装路径,修改安装路径(避免使用C盘)点击右下角“选择解释器”(手动选择,或输入解释器路径):用于管理和创建运行Python代码的虚拟环境,用来。(激活)ai_env环境,再执行命令。:python集成开发环境,用来。(支持 .ipynb 文件),在查询结果菜单中,点击。Python代码的。Python代码的。

2025-07-09 10:07:40 607

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除