快速乘及相关快速幂

本文介绍了在处理大数乘法时可能出现的算术溢出问题,通过快速乘算法和快速幂方法来分解乘法,避免了longlong类型的限制。作者给出了C++代码示例,展示了如何使用`fastc`和`quikpow`函数来有效解决这一问题。
摘要由CSDN通过智能技术生成

快速乘应用原因:当两个大数进行相乘进行取模(a*b%c)时,运算a*b可能会爆long long的范围,这时候就需要用到 快速乘 算法解决算术溢出的问题。

原理:快速乘是利用乘法分配律将a*b分解成多个式子相加(将后面一个乘数转化为二进制的形式计算)求解。例如:12*11=12*1011(2)=12*2^3+12*2^1+12*2^0=96+24+12=132。

注意:快速乘解决a*b%c算术溢出问题。

#include<bits/stdc++.h>
using namespace std;
#define ll long long

ll fastc(ll a,ll b,ll p){
	ll ans = 0;
	while(b){
		if(b % 2 == 1) ans = (ans + a) % p;
		a= a * 2 % p;
		b /= 2;
	}
	return ans;
}

int main(){
	
}

运用快速乘法的快速幂:

#include<bits/stdc++.h>
using namespace std;
#define ll long long

ll fastc(ll a,ll b,ll p){
	ll ans = 0;
	while(b){
		if(b % 2 == 1) ans = (ans + a) % p;
		a= a * 2 % p;
		b /= 2;
	}
	return ans;
}
ll quikpow(ll a,ll b,ll p){
	ll ans = 1;
	while(b){
		if(b % 2 == 1) ans = fastc(ans,a,p)%p;
		a = fastc(a,a,p) % p;
		b /= 2;
	}
	return ans;
}

int main(){
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值