蓝桥杯每日一题2023.12.4

文章介绍了在蓝桥杯竞赛中使用树型动态规划求解问题的方法,定义了状态表示并给出了C++代码实现,主要涉及子树联通块权值的最大值计算和深度优先遍历策略。
摘要由CSDN通过智能技术生成

题目描述

竞赛中心 - 蓝桥云课 (lanqiao.cn)

题目分析 

本题使用树型DP,蓝桥杯官网出现了一个点的错误,但实际答案是正确的

状态表示:f[u]:在以u为根的子树中包含u的所有联通块的权值的最大值

假设s1,s2,…sk 是u的孩子

f[u]=w[u]+max(f[s1],0)+max(f[s2],0)+…max(f[sk],0)

从根结点开始深度优先遍历每个子结点

最后遍历每一个点的权值,找出最大的点即可

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 1e5 + 10, M = 2 * N;
int n, a, b, w[N], e[M], ne[M], h[N], idx;
ll f[N]; 
void add(int a, int b)
{
	e[idx] = b, ne[idx] = h[a], h[a] = idx ++;
}
void dfs(int u, int father)//存当前节点,当前节点的父亲节点(防止往回搜索) 
{
	f[u] = w[u];
	for(int i = h[u]; i != -1; i = ne[i])//寻找u所有的儿子 
	{
		int j = e[i];
		if(j != father)//如果j不是往回搜的 
		{
			dfs(j, u);//继续向下搜索 
			f[u] += max(0ll, f[j]);
		}
	}
}
int main()
{
	cin >> n;
	memset(h, -1, sizeof h); 
	for(int i = 1; i <= n; i ++)cin >> w[i];
	for(int i = 1; i < n; i ++)
	{
		cin >> a >> b;
		add(a, b);
		add(b, a);
	}
	dfs(1, -1); 
	ll res = f[1];
	for(int i = 2; i <= n; i ++)
	{
		res = max(res, f[i]);
	}
	cout << res;
	return 0;	
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值