亚马逊云科技re:lnvent推出云上创新计算实例

很多领域的组织需要依靠高性能计算来解决复杂的学术、科学和商业问题。当前,众多客户如阿斯利康、F1一级方程式赛车、Maxar Technologies等在亚马逊云科技上借助其提供的卓越的安全性、可扩展性和弹性,运行传统的高性能计算工作负载,包括基因组学处理、计算流体动力学和天气预报模拟等。

工程师、研究人员和科学家使用Amazon EC2网络优化型实例(如C5n、R5n、M5n和C6gn)运行高性能计算工作负载,这些实例提供了近乎无限的计算能力和服务器之间的高网络带宽,实现数千个内核处理和交换数据。虽然这些实例的性能足以满足目前大多数高性能计算场景,但人工智能和自动驾驶汽车等新兴应用需要高性能计算优化实例,扩展到数万个甚至更多的内核,进一步解决难度系数持续增加的问题并降低高性能计算工作负载的成本。

亚马逊云科技在re:lnvent 2022上宣布推出三款分别由三种新的自研芯片支持的Amazon EC2实例,为客户广泛的工作负载提供更高性价比。Hpc7g实例配备了亚马逊云科技自研的最新Graviton3E处理器,与当前一代C6gn实例相比浮点性能提高了2倍,与当前一代Hpc6a实例相比性能提高了20%,为亚马逊云科技上的高性能计算工作负载提供了超高性价比。

                          计算实例创新

                    引领高性能计算新风向

本次HPC高性能计算领域,除已有的基于AMD Milan处理器的Hpc6a实例以外,亚马逊云科技推出了基于最新Graviton3E的Hpc7g实例以及基于Intel处理器的Hpc6id实例,为客户高性能计算场景提供更多选择。

acb25371756142c99b66884b261e9103.png

Hpc7g实例——专为大规模运行高性能计算工作负载提供超高性价比

Hpc7g实例由新的Amazon Graviton3E芯片提供支持,为客户在Amazon EC2上的高性能计算工作负载(如计算流体动力学、天气模拟、基因组学和分子动力学等)提供了超高的性价比。

与采用Graviton2处理器的当前一代C6gn实例相比,Hpc7g实例的浮点性能提高了2倍,与当前一代Hpc6a实例相比性能提高了20%,让客户能够在多达数万个内核的高性能计算集群中进行复杂的计算。

Hpc7g实例还提供高内存带宽和200Gbps的EFA(Elastic Fabric Adapter,弹性结构适配器)网络带宽,可以更快地运行并完成高性能计算应用。

 

Hpc6id实例——专为紧密耦合的HPC工作负载而构建的新实例类型

Amazon EC2 Hpc6id instance,基于Amazon Nitro系统构建的EC2 Hpc6id实例提供200Gbps弹性结构适配器网络,用于高吞吐量节点间通信,使客户HPC工作负载能够大规模运行。

同时,基于最新发布的Graviton3E处理器,亚马逊云科技发布了C7gn网络优化高性能计算实例,以及基于Inferentia2机器学习加速推理芯片的Inf2实例。

 

C7gn实例为网络密集型工作负载提供极佳性能,该项实例具有更高的网络带宽、更高的数据包转发性能和更低的延迟

C7gn实例采用新的、具有网络加速功能的第五代Nitro,在Amazon EC2网络优化型实例中具有最高的网络带宽和数据包处理性能,而且功耗更低。Nitro卡将主机CPU的I/O功能卸载到专门的硬件并进行加速,将Amazon EC2实例的所有资源几乎都提供给客户的工作负载,从而以更低的CPU利用率实现更稳定的性能。

新款Amazon Nitro卡使C7gn实例的每个CPU提供高达2倍的网络带宽,将每秒数据包处理性能提升50%,与当前一代网络优化型Amazon EC2实例相比,进一步降低了EFA网络延迟。

 

Inf2实例专为部署当今最严苛的深度学习模型而设计,支持分布式推理和随机舍入算法

为提供更好的应用或者更加定制化的个性体验,数据科学家和机器学习工程师正在构建更大、更复杂的深度学习模型。

Inf2实例,配备了亚马逊云科技自研的最新款Inferentia2机器学习加速推理芯片,可以运行高达1,750亿个参数的大型深度学习模型(如LLM、图像生成和自动语音检测),同时在Amazon EC2上提供最低的单次推理成本。Inf2是第一个支持分布式推理的推理优化型Amazon EC2实例,该技术将大型模型分布在多个芯片上,为参数超过1,000亿的深度学习模型提供极佳性能。

Inf2实例支持随机舍入,这种以概率方式进行四舍五入的方式与传统的四舍五入相比,能够提供更高的性能和更高的精度。与当前一代Inf1实例相比,Inf2实例提供了高达4倍的吞吐量,降低多达10倍的延迟,与基于GPU的实例相比,它的每瓦性能提升高达45%。 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

m0_75092401

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值