【Datawhale AI 夏令营】从零入门AI竞赛(机器学习方向)----电力需求预测挑战赛 Task 2

前面我们在Task 1中介绍了赛题,并给出基于经验模型的baseline完成了预测任务。

本Task中,我们的任务是使用进阶的机器学习模型lightgbm解决本次问题,以达到更好的预测效果。机器学习中的一个经典理论是:数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限

Task 2的任务是使用LightGBM解决问题

什么是lightbgm?它的作用是什么?

 LightGBM(Light Gradient Boosting Machine)是一个实现GBDT算法的框架,支持高效率的并行训练,并且具有更快的训练速度、更低的内存消耗、更好的准确率、支持分布式可以快速处理海量数据等优点。

LightGBM 框架中还包括随机森林和逻辑回归等模型。通常应用于二分类、多分类和排序等场景。

例如:在个性化商品推荐场景中,通常需要做点击预估模型。使用用户过往的行为(点击、曝光未点击、购买等)作为训练数据,来预测用户点击或购买的概率。根据用户行为和用户属性提取一些特征,包括:

  • 类别特征(Categorical Feature):字符串类型,如性别(男/女)。

  • 物品类型:服饰、玩具和电子等。

  • 数值特征(Numrical Feature):整型或浮点型,如用户活跃度或商品价格等。

更多内容可见 LightGBM 中文文档LightGBM英文文档

进阶代码详解

此次Task 2是基于kaggle完成的,这是我的NoteBook链接:Task 2

(1)导入模块 
import numpy as np
import pandas as pd
import lightgbm as lgb
from sklearn.metrics import mean_squared_log_error, mean_absolute_error, mean_squared_error
import tqdm
import sys
import os
import gc
import argparse
import warnings
warnings.filterwarnings('ignore')
  • Numpy: import numpy as np

    • 用于处理数组和数学计算的基础库,通常用于数值计算和数组操作。
  • Pandas: import pandas as pd

    • 用于数据处理和分析的库,特别擅长处理表格数据(DataFrame)。
  • LightGBM: import lightgbm as lgb

    • 一种高效的梯度提升树算法,常用于分类和回归任务,适合大规模数据集。
  • Sklearn Metrics: from sklearn.metrics import mean_squared_log_error, mean_absolute_error, mean_squared_error

    • 导入几个评估模型性能的指标:
      • mean_squared_log_error: 计算均方对数误差,适合处理有偏差的预测问题。
      • mean_absolute_error: 计算平均绝对误差,反映预测值与实际值之间的平均差距。
      • mean_squared_error: 计算均方误差,常用来评估回归模型的性能。
  • TQDM: import tqdm

    • 用于显示进度条,方便跟踪循环或长时间运行的操作的进度。
  • Sys 和 OS: import sysimport os

    • sys用于与Python解释器交互,os用于与操作系统交互,常用于文件路径管理等。
  • GC: import gc

    • Python的垃圾回收模块,用于手动管理内存,通常在处理大数据时使用。
  • Argparse: import argparse

    • 用于解析命令行参数,便于运行脚本时传递参数。
  • Warnings: import warnings

    • 用于控制警告的显示,这里用warnings.filterwarnings('ignore')来忽略所有警告,保持输出整洁。
(2)探索性数据分析(EDA) 
train = pd.read_csv('/kaggle/input/test11/test.csv')
test = pd.read_csv('/kaggle/input/train1/train.csv')

 这段代码的作用是读取训练和测试数据集。具体分析如下:

  1. 读取数据:

    • pd.read_csv() 用于读取指定路径的 CSV 文件,并将其转换为 Pandas 的 DataFrame。
    • train 存储的是训练集数据,test 存储的是测试集数据。
  2. 文件路径:

    • '/kaggle/input/train1/train.csv''/kaggle/input/test11/test.csv' 表示在 Kaggle 环境下的输入路径,通常用于比赛或项目中加载数据集。
数据集用途
  • 训练集 (train): 包含用于训练模型的特征和目标变量。
  • 测试集 (test): 包含用于评估模型的特征,通常不包含目标变量。
(3)特征工程 

这里主要构建了 历史平移特征 窗口统计特征;每种特征都是有理可据的,具体说明如下:

  • 历史平移特征:通过历史平移获取上个阶段的信息;如下图所示,可以将d-1时间的信息给到d时间,d时间信息给到d+1时间,这样就实现了平移一个单位的特征构建。

  • 窗口统计特征:窗口统计可以构建不同的窗口大小,然后基于窗口范围进统计均值、最大值、最小值、中位数、方差的信息,可以反映最近阶段数据的变化情况。如下图所示,可以将d时刻之前的三个时间单位的信息进行统计构建特征给我d时刻。

 完整代码如下:

# 合并训练数据和测试数据,并进行排序
data = pd.concat([test, train], axis=0, ignore_index=True)
data = data.sort_values(['id','dt'], ascending=False).reset_index(drop=True)

# 历史平移
for i in range(10,30):
    data[f'last{i}_target'] = data.groupby(['id'])['target'].shift(i)
    
# 窗口统计
data[f'win3_mean_target'] = (data['last10_target'] + data['last11_target'] + data['last12_target']) / 3

# 进行数据切分
train = data[data.target.notnull()].reset_index(drop=True)
test = data[data.target.isnull()].reset_index(drop=True)

# 确定输入特征
train_cols = [f for f in data.columns if f not in ['id','target']]

这段代码的主要目的是对训练数据和测试数据进行预处理,以便后续建模。以下是对每个步骤的详细分析:

1. 合并和排序数据
data = pd.concat([test, train], axis=0, ignore_index=True)
data = data.sort_values(['id', 'dt'], ascending=False).reset_index(drop=True) 
  • 合并:将 testtrain 数据集纵向合并为一个大数据集 data,并重置索引。
  • 排序:根据 iddt 列进行降序排序,这在时间序列分析中很重要,以确保时间上最新的数据在前面。
2. 历史平移
for i in range(10, 30): data[f'last{i}_target'] = data.groupby(['id'])['target'].shift(i) 
  • 平移:为每个 id 生成过去 10 到 29 个时间步的目标值(target),以便捕捉时间序列的历史特征。通过 shift(i) 方法,创建新的特征列,例如 last10_target 表示 10 个时间步之前的目标值。

3. 窗口统计
data[f'win3_mean_target'] = (data['last10_target'] + data['last11_target'] + data['last12_target']) / 3 
  • 窗口统计:计算过去三期的目标值的平均数,形成一个新的特征 win3_mean_target。这有助于平滑数据并捕捉最近的趋势。
4. 数据切分
train = data[data.target.notnull()].reset_index(drop=True) test = data[data.target.isnull()].reset_index(drop=True) 
  • 切分数据集:根据 target 列是否存在,将数据分回训练集和测试集。train 包含有目标值的行,而 test 则是缺失目标值的行,便于后续模型训练和预测。
5. 确定输入特征
train_cols = [f for f in data.columns if f not in ['id', 'target']] 
  • 特征选择:创建一个包含所有特征的列表 train_cols,该列表排除了 idtarget 列。这是后续建模时需要使用的输入特征。

(4)模型训练与测试集预测

这里选择使用Lightgbm模型,也是通常作为数据挖掘比赛的基线模型,在不需要过程调参的情况的也能得到比较稳定的分数。

另外需要注意的训练集和验证集的构建:因为数据存在时序关系,所以需要严格按照时序进行切分,

  • 这里选择原始给出训练数据集中dt为30之后的数据作为训练数据,之前的数据作为验证数据

  • 这样保证了数据不存在穿越问题(不使用未来数据预测历史数据)

def time_model(lgb, train_df, test_df, cols):
    # 训练集和验证集切分
    trn_x, trn_y = train_df[train_df.dt>=31][cols], train_df[train_df.dt>=31]['target']
    val_x, val_y = train_df[train_df.dt<=30][cols], train_df[train_df.dt<=30]['target']
    # 构建模型输入数据
    train_matrix = lgb.Dataset(trn_x, label=trn_y)
    valid_matrix = lgb.Dataset(val_x, label=val_y)
    # lightgbm参数
    lgb_params = {
        'boosting_type': 'gbdt',
        'objective': 'regression',
        'metric': 'mse',
        'min_child_weight': 5,
        'num_leaves': 2 ** 5,
        'lambda_l2': 10,
        'feature_fraction': 0.8,
        'bagging_fraction': 0.8,
        'bagging_freq': 4,
        'learning_rate': 0.05,
        'seed': 2024,
        'nthread' : 16,
        'verbose' : -1,
    }
    # 训练模型
    model = model = lgb.train(lgb_params, train_matrix, 50000, valid_sets=[train_matrix, valid_matrix], categorical_feature=[], callbacks=[lgb.early_stopping(500), lgb.log_evaluation(500)])
    # 验证集和测试集结果预测
    val_pred = model.predict(val_x, num_iteration=model.best_iteration)
    test_pred = model.predict(test_df[cols], num_iteration=model.best_iteration)
    # 离线分数评估
    score = mean_squared_error(val_pred, val_y)
    print(score)
       
    return val_pred, test_pred
    
lgb_oof, lgb_test = time_model(lgb, train, test, train_cols)

# 保存结果文件到本地
test['target'] = lgb_test
test[['id','dt','target']].to_csv('submit.csv', index=None)

time_model 函数用于训练 LightGBM 模型,处理时间序列数据。它将数据拆分为训练集和验证集,训练模型,评估性能,并生成验证集和测试集的预测结果。 

逐步分析

1. 切分数据
trn_x, trn_y = train_df[train_df.dt >= 31][cols], train_df[train_df.dt >= 31]['target'] val_x, val_y = train_df[train_df.dt <= 30][cols], train_df[train_df.dt <= 30]['target'] 
  • 训练集:选择 dt 大于等于 31 的行作为特征(trn_x)和目标(trn_y)。
  • 验证集:选择 dt 小于等于 30 的行作为特征(val_x)和目标(val_y)。这种方法确保模型在未来数据上训练,在过去数据上验证,适用于时间序列任务。
2. 创建 LightGBM 数据集
train_matrix = lgb.Dataset(trn_x, label=trn_y) 
valid_matrix = lgb.Dataset(val_x, label=val_y) 
  • 数据集构建:将训练和验证数据转换为 LightGBM 的数据集格式,以便优化训练和高效处理大型数据集。
3. 设置 LightGBM 参数
lgb_params = {
    'boosting_type': 'gbdt',
    'objective': 'regression',
    'metric': 'mse',
    'min_child_weight': 5,
    'num_leaves': 2 ** 5,
    'lambda_l2': 10,
    'feature_fraction': 0.8,
    'bagging_fraction': 0.8,
    'bagging_freq': 4,
    'learning_rate': 0.05,
    'seed': 2024,
    'nthread': 16,
    'verbose': -1,
}
  • 参数解释
    • boosting_type:指定提升方法(梯度提升决策树)。
    • objective:定义问题类型(回归)。
    • metric:评估指标(均方误差)。
    • min_child_weight:子节点所需的最小实例权重和(防止过拟合)。
    • num_leaves:树中的叶子节点数量,控制模型复杂度。
    • lambda_l2:L2 正则化项,防止过拟合。
    • feature_fractionbagging_fraction:随机选择部分特征和数据以进行训练,促进模型泛化。
    • learning_rate:更新权重的步长;较低的值通常需要更多的迭代以达到较好的性能。
    • seed:确保结果的可重复性。
    • nthread:用于并行处理的线程数。
    • verbose:控制输出信息;-1 表示不输出。
4. 训练模型
odel = lgb.train(lgb_params, train_matrix, 50000, valid_sets=[train_matrix, valid_matrix],
                  categorical_feature=[], callbacks=[lgb.early_stopping(500), lgb.log_evaluation(500)])
  • 模型训练:使用指定参数和数据集训练 LightGBM 模型,最多可迭代 50,000 次,并使用早期停止机制防止过拟合。
5. 进行预测
val_pred = model.predict(val_x, num_iteration=model.best_iteration)
test_pred = model.predict(test_df[cols], num_iteration=model.best_iteration)
  • 预测:使用训练好的模型对验证集和测试集进行预测,确保使用最佳迭代次数以获得最佳性能。
6. 评估模型
score = mean_squared_error(val_pred, val_y)
print(score)
  • 评分计算:计算验证集预测值与实际目标值之间的均方误差(MSE),提供模型性能的量化评估。
最后步骤
return val_pred, test_pred 
  • 返回值:函数返回验证集和测试集的预测结果。
保存结果
test['target'] = lgb_test 
test[['id', 'dt', 'target']].to_csv('submit.csv', index=None) 
  • 保存输出:将测试集的预测结果添加到 test 数据框,并将其保存为 submit.csv 文件,以供提交或进一步分析。

 kaggle运行结果

上传结果 

比赛网址:

2024 iFLYTEK AI开发者大赛-讯飞开放平台
最后得分:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值