LeetCode-70. 爬楼梯

1、题目描述

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

示例 1:

输入:n = 2
输出:2
解释:有两种方法可以爬到楼顶。
  1. 1 阶 + 1 阶
  2. 2 阶

示例 2:

输入:n = 3
输出:3
解释:有三种方法可以爬到楼顶。
  1. 1 阶 + 1 阶 + 1 阶
  2. 1 阶 + 2 阶
  3. 2 阶 + 1 阶

提示:

  • 1 <= n <= 45

2、代码

class Solution
{
  public:
    int climbStairs(int n) {
        // 处理边界情况:n为1或2时直接返回n
        if(n <= 2) {
            return n;
        }

        // 初始化前两个状态:
        // prev_prev 表示第n-2阶的方法数(初始对应n=1,值为1)
        // prev 表示第n-1阶的方法数(初始对应n=2,值为2)
        int prev_prev = 1, prev = 2, current;
        
        // 从第3阶开始迭代计算,直到第n阶
        for(int i = 3; i <= n; ++i) {
            // 计算当前阶的方法数:等于前两阶方法数之和
            current = prev_prev + prev;
            
            // 更新前两阶的状态,为下一次迭代做准备
            // prev_prev 移动到 prev 的位置
            // prev 移动到 current(即当前计算出的第i阶)的位置
            prev_prev = prev;
            prev = current;
        }

        return current;
    }
};

3、解题思路:

  1. 问题分析:每次可以爬 1 或 2 个台阶,到达第 n 阶的方法数可以分解为从第 n-1 阶爬 1 步和从第 n-2 阶爬 2 步的方法数之和,这符合斐波那契数列的递推关系。
  2. 动态规划优化:由于每次只需要前两项的值,我们可以用两个变量来保存前两项,避免使用数组,从而将空间复杂度优化到 O (1)。
  3. 边界条件:当 n=1 时,只有 1 种方法;当 n=2 时,有 2 种方法。对于 n≥3 的情况,通过迭代计算前两项的和来得到结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值