Java全栈面试实录:从电商场景到AIGC的深度技术剖析

场景:互联网大厂Java后端面试

面试官(严肃):小曾,请简单介绍下你过往的项目经验,尤其涉及微服务和大数据的场景。
小曾(自信):我参与过一个大型电商平台的微服务重构,用了Spring Cloud和Kafka,处理了高并发订单系统。

第一轮提问

面试官

  1. 你项目中如何处理订单的分布式事务?
  2. Kafka的消费者如何保证消息的幂等性?
  3. 电商场景下,如何设计秒杀活动的缓存策略?
  4. 使用Spring Cloud时,Eureka和Consul的选型区别是什么?
  5. 你提到用了Kafka,如何监控其延迟和队列积压?

小曾的回答

  1. “用了2PC协议,但实际业务中更多靠业务幂等性设计。”(面试官点头:“不错,但能具体说下业务幂等吗?”小曾支支吾吾)
  2. “好像有设置ack参数?不太确定。”(面试官:“默认是0吗?那如何防止重复消费?”)
  3. “用了Redis缓存,但没考虑分布式锁。”(面试官:“那在高并发下会超卖啊。”)
  4. “Consul更优雅吧?支持健康检查。”(面试官:“但Eureka更适合简单集群,能举例吗?”)
  5. “用Micrometer看指标?但没细调。”(面试官:“Prometheus+Grafana更规范。”)

面试官(微笑):小曾思路还可以,但细节需加强。下一轮我们聊聊内容社区的场景。

第二轮提问

面试官

  1. 内容社区如何设计点赞功能的秒杀防刷?
  2. 你用过Spring WebFlux吗?如何处理流式数据的缓存?
  3. 如何结合Redis+Lua实现分布式锁?
  4. 内容推荐系统如何用Elasticsearch做实时搜索?
  5. 你了解AIGC吗?比如用Spring AI生成动态文案?

小曾的回答

  1. “应该用Redis+ZSet吧?但具体算法没细研究。”(面试官:“那在高并发下如何保证顺序?”)
  2. “没用过WebFlux,但Spring MVC也能异步处理?”(面试官:“WebFlux是响应式,更适合实时数据。”)
  3. “Lua脚本可以啊,但没实战过。”(面试官:“能写个简单版本吗?”小曾卡壳)
  4. “Elasticsearch吧?但ES集群调优我不熟。”(面试官:“那如何解决冷热数据问题?”)
  5. “Spring AI刚出来,我看过文档,但没落地过。”(面试官:“能说说AIGC的客户端-服务器架构吗?”小曾沉默)

面试官(叹气):技术广度不错,但深度不足。最后一轮,我们结合AI场景提问。

第三轮提问

面试官

  1. AIGC中,如何用检索增强生成(RAG)提升文案质量?
  2. 向量化文本时,你用过哪些Embedding模型?
  3. AI幻觉问题如何规避?
  4. Agent智能代理如何与Spring Boot集成?
  5. 工具执行框架(如LangChain)在客服系统怎么应用?

小曾的回答

  1. “RAG是检索+生成?好像用Elasticsearch做检索?”(面试官:“但如何融合用户历史数据?”)
  2. “OpenAI的Embedding吧?但不知道怎么部署。”(面试官:“本地化部署用Ollama?”)
  3. “增加训练数据?但没具体方案。”(面试官:“还能用图数据库吗?”)
  4. “Spring Boot能集成Agent?我不太清楚。”(面试官:“但可以看下官方示例。”)
  5. “客服系统用Redis存储会话?但没研究工具链。”(面试官:“LangChain的内存管理你了解吗?”)

面试官(摇头):小曾,你还有很多需要学习。这样吧,回去等通知。


详细答案解析

第一轮:电商场景微服务

  1. 分布式事务
    • 方案:分布式事务框架(如Seata)或业务幂等设计(Token+Redis锁)。
    • 业务幂等:下单时生成全局唯一ID存Redis,拦截重复请求。
  2. Kafka幂等性
    • 设置acks=all确保 Leader 写入成功,retries处理重试。
    • 消费者用幂等性ID(如订单号)存Redis,避免重复处理。
  3. 秒杀缓存策略
    • 前端用CDN预热+后端Redis缓存(设置过期+分布式锁)。
    • 超卖时补偿订单或发消息重试。
  4. Eureka vs Consul
    • Eureka简单,适合Java生态;Consul支持HTTP/GRPC,更灵活。
  5. Kafka监控
    • 使用Prometheus采集Consumer LagBroker Pressure,Grafana可视化。

第二轮:内容社区技术

  1. 点赞防刷
    • 用户IP+设备ID存Redis,设置滑动窗口计数。
    • 超过阈值拦截或降低权重。
  2. Spring WebFlux缓存
    • @WebFluxCacheable结合Redis缓存流式数据。
    • 注意分页场景需动态计算缓存key。
  3. Redis分布式锁
    String lockKey = "order_lock:" + orderId;
    String result = redisTemplate.opsForValue().setIfAbsent(lockKey, "locked", 10, TimeUnit.SECONDS);
    if ("locked".equals(result)) {
        // 执行业务
        redisTemplate.delete(lockKey);
    }
    
  4. Elasticsearch搜索优化
    • 冷热数据分片:配置index жизненный цикл自动归档。
    • 语义搜索用match_phase_query替代match_query
  5. Spring AI初步应用
    • 引入spring-ai依赖,用LLMService生成文案。
    • 动态参数如用户画像可通过上下文传递。

第三轮:AIGC技术栈

  1. RAG检索增强生成
    • 知识库先存入Elasticsearch,生成时用bool_query召回相关文档。
    • 结合用户历史数据(如浏览记录)调整权重。
  2. Embedding模型
    • OpenAI(需API密钥)或本地部署Ollama(轻量)。
    • 向量化后用余弦相似度计算文本距离。
  3. AI幻觉规避
    • 增加事实核查模块(如维基百科API)。
    • 限制生成文本长度或加入约束提示词。
  4. Agent集成
    • Spring Boot调用LangChain执行任务(如搜索/计算)。
    • @Chain注解定义工作流。
  5. 客服系统应用
    • 存储用户会话历史(Redis+Vector DB)。
    • 工具调用标准化:定义ToolExecutor接口处理API请求。

通过以上场景化提问,小白可以学习如何结合业务设计技术方案,并关注AI等前沿技术的落地实践。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值