场景:互联网大厂Java后端面试
面试官(严肃):小曾,请简单介绍下你过往的项目经验,尤其涉及微服务和大数据的场景。
小曾(自信):我参与过一个大型电商平台的微服务重构,用了Spring Cloud和Kafka,处理了高并发订单系统。
第一轮提问
面试官:
- 你项目中如何处理订单的分布式事务?
- Kafka的消费者如何保证消息的幂等性?
- 电商场景下,如何设计秒杀活动的缓存策略?
- 使用Spring Cloud时,Eureka和Consul的选型区别是什么?
- 你提到用了Kafka,如何监控其延迟和队列积压?
小曾的回答:
- “用了2PC协议,但实际业务中更多靠业务幂等性设计。”(面试官点头:“不错,但能具体说下业务幂等吗?”小曾支支吾吾)
- “好像有设置ack参数?不太确定。”(面试官:“默认是0吗?那如何防止重复消费?”)
- “用了Redis缓存,但没考虑分布式锁。”(面试官:“那在高并发下会超卖啊。”)
- “Consul更优雅吧?支持健康检查。”(面试官:“但Eureka更适合简单集群,能举例吗?”)
- “用Micrometer看指标?但没细调。”(面试官:“Prometheus+Grafana更规范。”)
面试官(微笑):小曾思路还可以,但细节需加强。下一轮我们聊聊内容社区的场景。
第二轮提问
面试官:
- 内容社区如何设计点赞功能的秒杀防刷?
- 你用过Spring WebFlux吗?如何处理流式数据的缓存?
- 如何结合Redis+Lua实现分布式锁?
- 内容推荐系统如何用Elasticsearch做实时搜索?
- 你了解AIGC吗?比如用Spring AI生成动态文案?
小曾的回答:
- “应该用Redis+ZSet吧?但具体算法没细研究。”(面试官:“那在高并发下如何保证顺序?”)
- “没用过WebFlux,但Spring MVC也能异步处理?”(面试官:“WebFlux是响应式,更适合实时数据。”)
- “Lua脚本可以啊,但没实战过。”(面试官:“能写个简单版本吗?”小曾卡壳)
- “Elasticsearch吧?但ES集群调优我不熟。”(面试官:“那如何解决冷热数据问题?”)
- “Spring AI刚出来,我看过文档,但没落地过。”(面试官:“能说说AIGC的客户端-服务器架构吗?”小曾沉默)
面试官(叹气):技术广度不错,但深度不足。最后一轮,我们结合AI场景提问。
第三轮提问
面试官:
- AIGC中,如何用检索增强生成(RAG)提升文案质量?
- 向量化文本时,你用过哪些Embedding模型?
- AI幻觉问题如何规避?
- Agent智能代理如何与Spring Boot集成?
- 工具执行框架(如LangChain)在客服系统怎么应用?
小曾的回答:
- “RAG是检索+生成?好像用Elasticsearch做检索?”(面试官:“但如何融合用户历史数据?”)
- “OpenAI的Embedding吧?但不知道怎么部署。”(面试官:“本地化部署用Ollama?”)
- “增加训练数据?但没具体方案。”(面试官:“还能用图数据库吗?”)
- “Spring Boot能集成Agent?我不太清楚。”(面试官:“但可以看下官方示例。”)
- “客服系统用Redis存储会话?但没研究工具链。”(面试官:“LangChain的内存管理你了解吗?”)
面试官(摇头):小曾,你还有很多需要学习。这样吧,回去等通知。
详细答案解析
第一轮:电商场景微服务
- 分布式事务:
- 方案:分布式事务框架(如Seata)或业务幂等设计(Token+Redis锁)。
- 业务幂等:下单时生成全局唯一ID存Redis,拦截重复请求。
- Kafka幂等性:
- 设置
acks=all
确保 Leader 写入成功,retries
处理重试。 - 消费者用幂等性ID(如订单号)存Redis,避免重复处理。
- 设置
- 秒杀缓存策略:
- 前端用CDN预热+后端Redis缓存(设置过期+分布式锁)。
- 超卖时补偿订单或发消息重试。
- Eureka vs Consul:
- Eureka简单,适合Java生态;Consul支持HTTP/GRPC,更灵活。
- Kafka监控:
- 使用Prometheus采集
Consumer Lag
、Broker Pressure
,Grafana可视化。
- 使用Prometheus采集
第二轮:内容社区技术
- 点赞防刷:
- 用户IP+设备ID存Redis,设置滑动窗口计数。
- 超过阈值拦截或降低权重。
- Spring WebFlux缓存:
- 用
@WebFluxCacheable
结合Redis缓存流式数据。 - 注意分页场景需动态计算缓存key。
- 用
- Redis分布式锁:
String lockKey = "order_lock:" + orderId; String result = redisTemplate.opsForValue().setIfAbsent(lockKey, "locked", 10, TimeUnit.SECONDS); if ("locked".equals(result)) { // 执行业务 redisTemplate.delete(lockKey); }
- Elasticsearch搜索优化:
- 冷热数据分片:配置
index жизненный цикл
自动归档。 - 语义搜索用
match_phase_query
替代match_query
。
- 冷热数据分片:配置
- Spring AI初步应用:
- 引入
spring-ai
依赖,用LLMService
生成文案。 - 动态参数如用户画像可通过上下文传递。
- 引入
第三轮:AIGC技术栈
- RAG检索增强生成:
- 知识库先存入Elasticsearch,生成时用
bool_query
召回相关文档。 - 结合用户历史数据(如浏览记录)调整权重。
- 知识库先存入Elasticsearch,生成时用
- Embedding模型:
- OpenAI(需API密钥)或本地部署Ollama(轻量)。
- 向量化后用余弦相似度计算文本距离。
- AI幻觉规避:
- 增加事实核查模块(如维基百科API)。
- 限制生成文本长度或加入约束提示词。
- Agent集成:
- Spring Boot调用LangChain执行任务(如搜索/计算)。
- 用
@Chain
注解定义工作流。
- 客服系统应用:
- 存储用户会话历史(Redis+Vector DB)。
- 工具调用标准化:定义
ToolExecutor
接口处理API请求。
通过以上场景化提问,小白可以学习如何结合业务设计技术方案,并关注AI等前沿技术的落地实践。