RSPapers学习资料汇总-推荐系统必读论文集锦

RSPapers

RSPapers:推荐系统必读论文集锦 🔥

RSPapers是GitHub上一个非常受欢迎的推荐系统论文集合,由张宏磊(hongleizhang)整理维护。该项目为推荐系统研究者和实践者提供了系统全面的学习资料,受到广泛关注。本文将对RSPapers项目进行详细介绍,帮助读者更好地利用这一优质资源。

项目概览

RSPapers项目地址:https://github.com/hongleizhang/RSPapers

该项目收录了推荐系统领域的经典论文和教程,涵盖范围广泛,包括:

  • 系统性教程
  • 综合性综述
  • 通用推荐系统
  • 社交推荐系统
  • 基于深度学习的推荐系统
  • 冷启动问题
  • 基于位置的推荐
  • 高效推荐系统
  • 探索与利用问题
  • 可解释性推荐
  • CTR预测
  • 知识图谱推荐
  • 基于评论的推荐
  • 对话式推荐系统
  • 工业界实践
  • 隐私保护推荐
  • 大语言模型推荐

目前该项目已获得6100+星标,1300+fork,是推荐系统领域最受欢迎的论文集合之一。

RSPapers项目截图

主要内容

RSPapers项目按主题分类整理了大量高质量论文,主要包括以下几个部分:

1. 教程(Tutorials)

收录了多个顶级会议的推荐系统相关教程,如ICML、RecSys、SIGIR等。这些教程由该领域知名研究者主讲,是入门推荐系统的优质资料。

2. 综述(Surveys)

整理了推荐系统各个方向的综述论文,包括混合推荐、社交推荐、深度学习推荐等。这些综述对相关研究方向进行了系统总结,有助于快速了解研究现状。

3. 通用推荐系统(General RS)

收录了协同过滤、矩阵分解等经典推荐算法的代表性论文。这些论文奠定了推荐系统的基础,是必读文献。

4. 社交推荐系统(Social RS)

整理了利用社交信息进行推荐的相关论文,探讨如何将用户社交关系融入推荐模型。

5. 基于深度学习的推荐系统(Deep Learning based RS)

收集了将深度学习技术应用于推荐系统的相关论文,反映了近年来的研究热点。

RSPapers项目结构

此外,项目还包括冷启动问题、CTR预测、知识图谱推荐等多个专题。每个主题下都精选了该方向的代表性论文,方便研究者快速找到所需资料。

使用指南

  1. 可以直接访问项目主页浏览所有内容。

  2. 使用GitHub的搜索功能,输入关键词查找感兴趣的论文。

  3. 可以Fork项目到自己的仓库,方便长期学习使用。

  4. 项目会定期更新,建议Watch项目及时获取最新论文信息。

  5. 如果发现优秀的论文,可以提交Pull Request贡献到项目中。

总结

RSPapers项目为推荐系统研究者和实践者提供了一个优质的学习资源库。无论是初学者还是资深研究人员,都可以在这里找到有价值的论文和教程。希望本文的介绍能够帮助更多人了解和利用这一宝贵资源,促进推荐系统领域的发展与创新。

推荐系统是一个rapidly evolving的领域,持续关注最新进展很重要。欢迎大家关注RSPapers项目,共同学习进步! 

文章链接:www.dongaigc.com/a/rspapers-study-materials-recommended-papers

https://www.dongaigc.com/a/rspapers-study-materials-recommended-papers

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值