C. Scoring Subsequences - 思维+数学+二分或双指针

题意:

        一个序列[a1,a2,a3,......an]的最大分数是(a1*a2*...*an)/(1*2*...*n),假设一个序列的最大分数为m,那么定义这个序列的价值为使最大分数为m的最大长度的子序列,给定一个长度为n的单调不下降数组,输出n个数,第i个数为[a1,a2,...,ai]序列的价值。

分析:

        一个序列的分数为a1/1*a2/2*a3/3*a4/4...*an/n,满足an>=an-1>=...>=a2>=a1,可以做一下变形,变为a1/n*a2/n-1*...*an-1/2*an/1,可以发现变形后的一串数是单调不下降的,因此枚举最大长度就可以从后往前判断最大长度的边界,边界情况一定是当ai/n-i+1<1时就一定会使乘积变小,因此只要判断左边界是否满足ai>=n-i+1就可以确定一段区间满足最大长度。判断最小边界可以用二分来做,也可以用双指针维护一段最大长度的区间。

代码:

二分做法:

#include <bits/stdc++.h>

using namespace std;

typedef long long ll;

const int N=1e5+10;

int a[N];

void solve()
{
	int t;
	cin>>t;
	while(t--)
	{
		int n;
		cin>>n;
		for(int i=1;i<=n;i++) cin>>a[i];
		for(int i=1;i<=n;i++)
		{
			int l=1;
			int r=i;
			while(l<r)
			{
				int mid=(l+r)/2;
				if(a[mid]>=i-mid+1) r=mid;
				else l=mid+1;
			}
			cout<<i-l+1<<' ';
		}
		cout<<'\n';
	}
}

int main()
{
	ios::sync_with_stdio(false);
	cin.tie(0);
	cout.tie(0);
	
	solve();
	
	return 0;
}

双指针做法:

#include <bits/stdc++.h>

using namespace std;

typedef long long ll;

const int N=1e5+10;

int a[N];

void solve()
{
	int t;
	cin>>t;
	while(t--)
	{
		int n;
		cin>>n;
		for(int i=1;i<=n;i++) cin>>a[i];
		for(int i=1,j=1;i<=n;i++)
		{
			while(a[j]<i-j+1&&j<=n) j++;
			cout<<i-j+1<<' ';
		}
		cout<<'\n';
	}
}

int main()
{
	ios::sync_with_stdio(false);
	cin.tie(0);
	cout.tie(0);
	
	solve();
	
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值