题意:
一个序列[a1,a2,a3,......an]的最大分数是(a1*a2*...*an)/(1*2*...*n),假设一个序列的最大分数为m,那么定义这个序列的价值为使最大分数为m的最大长度的子序列,给定一个长度为n的单调不下降数组,输出n个数,第i个数为[a1,a2,...,ai]序列的价值。
分析:
一个序列的分数为a1/1*a2/2*a3/3*a4/4...*an/n,满足an>=an-1>=...>=a2>=a1,可以做一下变形,变为a1/n*a2/n-1*...*an-1/2*an/1,可以发现变形后的一串数是单调不下降的,因此枚举最大长度就可以从后往前判断最大长度的边界,边界情况一定是当ai/n-i+1<1时就一定会使乘积变小,因此只要判断左边界是否满足ai>=n-i+1就可以确定一段区间满足最大长度。判断最小边界可以用二分来做,也可以用双指针维护一段最大长度的区间。
代码:
二分做法:
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=1e5+10;
int a[N];
void solve()
{
int t;
cin>>t;
while(t--)
{
int n;
cin>>n;
for(int i=1;i<=n;i++) cin>>a[i];
for(int i=1;i<=n;i++)
{
int l=1;
int r=i;
while(l<r)
{
int mid=(l+r)/2;
if(a[mid]>=i-mid+1) r=mid;
else l=mid+1;
}
cout<<i-l+1<<' ';
}
cout<<'\n';
}
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
solve();
return 0;
}
双指针做法:
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=1e5+10;
int a[N];
void solve()
{
int t;
cin>>t;
while(t--)
{
int n;
cin>>n;
for(int i=1;i<=n;i++) cin>>a[i];
for(int i=1,j=1;i<=n;i++)
{
while(a[j]<i-j+1&&j<=n) j++;
cout<<i-j+1<<' ';
}
cout<<'\n';
}
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
solve();
return 0;
}