爬虫学习总结

爬虫学习总结

 

一、核心概念

 

网络爬虫:模拟浏览器请求,自动抓取网页数据的程序。

分类:通用爬虫(爬取全网数据)、聚焦爬虫(定向抓取特定领域数据)。

 

二、关键流程

 

1. 发送请求:用 requests / aiohttp 库模拟HTTP请求(GET/POST)。

2. 解析数据:

- 正则表达式:提取特定格式文本(如 re 模块)。

- HTML解析器: BeautifulSoup 解析标签结构, lxml 提升效率。

- JSON/XML:直接解析接口返回的结构化数据。

3. 存储数据:保存为CSV/JSON文件,或存入数据库(MySQL/MongoDB)。

 

三、进阶技术

 

- 动态网页处理:

- Selenium/Playwright:模拟浏览器操作,处理JavaScript渲染内容。

- 逆向分析:破解加密参数(如JS逆向、Cookie/Session跟踪)。

- 分布式爬虫:用 Scrapy-Redis 实现多节点协作,提升爬取效率。

- 反爬应对:

- 伪装请求头(User-Agent、Referer)。

- 限制请求频率(添加延时 time.sleep() )。

- 使用代理IP池(轮换IP避免封禁)。

 

四、常用框架

 

- Scrapy:高效的Python爬虫框架,支持异步请求和管道处理。

- PySpider:可视化操作界面,适合快速开发。

- GoCrawling:Go语言高性能爬虫框架,适合大规模数据采集。

 

五、法律与伦理

 

- 遵守Robots协议:通过 /robots.txt 查看网站爬取规则。

- 避免过度爬取:控制频率,防止影响网站正常运营。

- 数据合规:确保采集数据仅用于合法用途,保护用户隐私。

 

六、学习资源

 

- 书籍:《Python3网络爬虫开发实战》《精通Python网络爬虫》。

- 工具:Charles/Fiddler抓包分析,Postman调试接口。

- 社区:Stack Overflow、SegmentFault、GitHub爬虫项目实战。

 

总结:爬虫学习需兼顾技术(请求、解析、存储)与合规,从基础案例入手,逐步挑战动态页面和反爬策略,最终服务于数据采集与分析需求。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值