爬虫学习总结
一、核心概念
网络爬虫:模拟浏览器请求,自动抓取网页数据的程序。
分类:通用爬虫(爬取全网数据)、聚焦爬虫(定向抓取特定领域数据)。
二、关键流程
1. 发送请求:用 requests / aiohttp 库模拟HTTP请求(GET/POST)。
2. 解析数据:
- 正则表达式:提取特定格式文本(如 re 模块)。
- HTML解析器: BeautifulSoup 解析标签结构, lxml 提升效率。
- JSON/XML:直接解析接口返回的结构化数据。
3. 存储数据:保存为CSV/JSON文件,或存入数据库(MySQL/MongoDB)。
三、进阶技术
- 动态网页处理:
- Selenium/Playwright:模拟浏览器操作,处理JavaScript渲染内容。
- 逆向分析:破解加密参数(如JS逆向、Cookie/Session跟踪)。
- 分布式爬虫:用 Scrapy-Redis 实现多节点协作,提升爬取效率。
- 反爬应对:
- 伪装请求头(User-Agent、Referer)。
- 限制请求频率(添加延时 time.sleep() )。
- 使用代理IP池(轮换IP避免封禁)。
四、常用框架
- Scrapy:高效的Python爬虫框架,支持异步请求和管道处理。
- PySpider:可视化操作界面,适合快速开发。
- GoCrawling:Go语言高性能爬虫框架,适合大规模数据采集。
五、法律与伦理
- 遵守Robots协议:通过 /robots.txt 查看网站爬取规则。
- 避免过度爬取:控制频率,防止影响网站正常运营。
- 数据合规:确保采集数据仅用于合法用途,保护用户隐私。
六、学习资源
- 书籍:《Python3网络爬虫开发实战》《精通Python网络爬虫》。
- 工具:Charles/Fiddler抓包分析,Postman调试接口。
- 社区:Stack Overflow、SegmentFault、GitHub爬虫项目实战。
总结:爬虫学习需兼顾技术(请求、解析、存储)与合规,从基础案例入手,逐步挑战动态页面和反爬策略,最终服务于数据采集与分析需求。