- 博客(3)
- 收藏
- 关注
原创 PyTorch深度学习基础
它们的不同之处在于,torch.split 传入的是拆分后每个矩阵的大小,可以传入 li ist,也可以传入整数,而torch.chunk传入的是拆分的矩阵个数。2、在pytorch中,tensor.view和tensor.reshape都可以用来更改tensor的维度,tensor.view返回的一定是一个索引,原始值和返回值都被更改,tensor.reshape返回的是引用还是复制时不确定的。这两个函数只接收二维Tensor,torch.t 是 torch.transpose 的简化版。
2024-03-24 21:03:12 664
原创 走进神秘领域:深度学习框架
学习深度学习框架是一项具有挑战性但非常有价值的任务。选择合适的框架:根据你的需求、项目类型以及团队熟悉度,选择一个适合的深度学习框架。TensorFlow、PyTorch、Keras等都是流行的选择。理解基础概念:在深入框架之前,确保你对深度学习的基本概念有清晰的理解,包括神经网络、损失函数、优化器、前向传播和反向传播等。官方文档和教程:大多数深度学习框架都有详尽的官方文档和教程。这些资源通常是学习的最佳起点,可以帮助你快速上手。实践操作:深度学习是一个实践驱动的领域。
2024-03-10 21:38:30 1325
原创 深度学习全景解读:人工智能的神秘大脑!
一、深度学习的奥秘 深度学习是一种模拟人脑分析学习的算法,通过构建多层的神经网络来学习数据的分布式特征表示。随着技术的进步,我们有理由相信,深度学习将帮助我们解决更多复杂的问题,推动社会的进步。同时,随着对深度学习理解的深入,我们将能够设计出更加高效、可解释的模型,让这股智能时代的引擎更加强大。让我们一起期待,在深度学习的引领下,我们的世界将变得更加智能,更加美好。
2024-03-03 21:56:49 994 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人