langchain-graph-builder langchain-graph-builder 是一个基于 FastAPI 构建的后端服务项目,旨在为知识库的创建、管理以及与之相关的对话功能提供接口支持。通过该项目,用户可以方便地创建知识库、上传文件至知识库、获取文件内容、删除知识库、生成知识库文件向量、获取知识库信息、进行大模型流式对话以及 RAG 对话等操作,同时还支持创建知识库图谱。
书生大模型关卡任务-MindSearch 快速部署 随着硅基流动提供了免费的 InternLM2.5-7B-Chat 服务(免费的 InternLM2.5-7B-Chat 真的很香),MindSearch 的部署与使用也就迎来了纯 CPU 版本,进一步降低了部署门槛。那就让我们来一起看看如何使用硅基流动的 API 来部署 MindSearch 吧。
书生大模型关卡任务-InternVL 多模态模型部署微调实践 InternVL 是一种用于多模态任务的深度学习模型,旨在处理和理解多种类型的数据输入,如图像和文本。它结合了视觉和语言模型,能够执行复杂的跨模态任务,比如图文匹配、图像描述生成等。通过整合视觉特征和语言信息,InternVL 可以在多模态领域取得更好的表现。对于InternVL这个模型来说,它vision模块就是一个微调过的ViT,llm模块是一个InternLM的模型。对于视觉模块来说,它的特殊之处在。动态高分辨率(Dynamic High Resolution)
书生大模型关卡任务-LMDeploy 量化部署实践闯关任务 关于Function call,即函数调用功能,它允许开发者在调用模型时,详细说明函数的作用,并使模型能够智能地根据用户的提问来输入参数并执行函数。完成调用后,模型会将函数的输出结果作为回答用户问题的依据。相比使用BF16精度的kv cache,int4的Cache可以在相同显存下只需要4位来存储一个数值,而BF16需要16位。在终端中,让我们输入以下指令,来创建一个名为lmdeploy的conda环境,python版本为3.10,创建成功后激活环境并安装0.5.3版本的lmdeploy及相关包。
书生大模型关卡任务-Lagent 自定义你的 Agent 智能体 Lagent 中关于工具部分的介绍文档位于。继承BaseAction类实现简单工具的run方法;或者实现工具包内每个子工具的功能简单工具的run方法可选被tool_api装饰;工具包内每个子工具的功能都需要被tool_api装饰下面我们将实现一个调用 MagicMaker API 以完成文生图的功能。首先,我们先来创建工具文件:然后,我们将下面的代码复制进入'dongman', # 动漫'guofeng', # 国风'xieshi', # 写实。
书生大模型关卡任务-OpenCompass 评测 InternLM-1.8B 实践 确保按照上述步骤正确安装 OpenCompass 并准备好数据集后,可以通过以下命令评测 InternLM2-Chat-1.8B 模型在 C-Eval 数据集上的性能。在 --debug 模式下,任务将按顺序执行,并实时打印输出。除了通过命令行配置实验外,OpenCompass 还允许用户在配置文件中编写实验的完整配置,并通过 run.py 直接运行它。运行以下代码,在configs文件夹下创建。在 OpenCompass 中评估一个模型通常包括以下几个阶段:配置 -> 推理 -> 评估 -> 可视化。
书生大模型关卡任务-XTuner 微调个人小助手认知 对于全量微调的模型(full)其实是不需要进行整合这一步的,因为全量微调修改的是原模型的权重而非微调一个新的 Adapter ,因此是不需要进行模型整合的。比如我们这里微调的是书生·浦语的模型,我们就可以匹配搜索。在 PART 1 的部分,由于我们不再需要在 HuggingFace 上自动下载模型,因此我们先要更换模型的路径以及数据集的路径为我们本地的路径。,在使用前我们需要准备好三个路径,包括原模型的路径、训练好的 Adapter 层的(模型格式转换后的)路径以及最终保存的路径。我们可以添加自己的输入。
书生大模型关卡任务-InternLM + LlamaIndex RAG 实践 正常情况下,其会自动从互联网上下载,但可能由于网络原因会导致下载中断,此处我们可以从国内仓库镜像地址下载相关资源,保存到服务器上。:(我们也可以选用别的开源词向量模型来进行 Embedding,目前选用这个模型是相对轻量、支持中文且效果较好的,同学们可以自由尝试别的开源词向量模型) 运行以下指令,新建一个python文件。#创建一个VectorStoreIndex,并使用之前加载的文档来构建索引。#设置全局的llm属性,这样在索引查询时会使用这个模型。回答的效果并不好,并不是我们想要的xtuner。
书生大模型关卡任务-浦语提示词工程实践 近期相关研究发现,LLM在对比浮点数字时表现不佳,经验证,internlm2-chat-1.8b (internlm2-chat-7b)也存在这一问题,例如认为。- Skills: 你拥有数学和计算机科学的知识,能够理解浮点数的表示和比较机制,以及如何设计算法来准确比较它们。- Profile: 你是一位在数值比较领域具有丰富经验的专家,能够准确地识别和比较不同大小的浮点数。在模型回复的过程中,首先获取用户输入的文本,然后处理文本特征并根据输入文本特征预测之后的文本,原理为。
书生大模型全链路开源开放体系笔记 书生·万卷数据集是一个包含文本、图像-文本、视频等多种模态的数据集,为模型提供了丰富的语言信息和知识基础,使得模型能够更好地理解和生成文本。:数据集中的文本数据,尤其是图像-文本和视频数据,为模型提供了丰富的创作素材,有助于提升模型在内容创作方面的能力。:数据集的多样性和丰富性使得模型在处理不同语言、不同领域和不同格式的文本时,能够展现出更好的理解和生成能力。:数据集在收集和预处理过程中,采用了严格的安全和合规性策略,确保模型在应用时的安全性和合规性。
书生大模型关卡任务-Git 基础知识 PR链接:Comparing InternLM:camp3...666xz666:camp3_5402 · InternLM/Tutorial · GitHub666xz666/InternLM-Learning: 本仓库用于存放书生大模型学习笔记 (github.com)