AI核心素养测评大纲的主要内容(202311)

一、说明

总结与我相关的内容

二、等级划分
 

按照人才培养过程划分,测评项目分为两个阶段:

入门普及阶段,考生可根据自己的特长和能力,任选其一模块参与测评。

进阶提高阶段,考生可根据自我兴趣和探究能力,任选其一进行申报。

入门普及阶段

表 1 入门普及阶段项目说明

测评项目

工具/模块

级别

A.人工智能程序设计

1.图形化编程语言

一级至五级

2.Python 语言

一级至八级

3.C++语言

一级至五级

B.人工智能感知控制

1.思维逻辑

一级至三级

2.积木机器人

一级至四级

3.Arduino

一级至五级

4.Micro:bit

一级至五级

C.人工智能产品结构

1.结构搭建

一级至四级

进阶提高阶段

表 2 进阶提高阶段项目说明

测评项目

工具/模块

测评方式及成果

D.人工智能应用领域

1.智能交通

作品展示+项目问辩

作品包含(实物/方案/原型、研究报告)

2.智慧家居

3.智慧农业

4.智慧医疗

E.人工智能算法基础

1.大数据

作品展示+项目问辩

作品包含(实物/方案/原型、研究报告)

2.机器视觉

3.自然语言处理

4.机器学习

5.知识工程

三、测评大纲

总纲

1) 了解人工智能的创立时间、历史发展与未来趋势。

2) 了解中国历史上的人工智能事件及身边的人工智能应用。

3) 了解专家系统的含义、构成、基本原理。

4) 了解计算机视觉、语音识别的基本步骤及相关应用。

5) 了解计算机语言基础、网络通信与安全、操作系统。

6) 了解机器学习中回归算法、分类算法、降维算法等常用算法。

7) 了解计算机科学与人工智能之间的交叉渗透知识。

8) 了解信息意识、计算思维、数字化学习与创新、信息社会责任相关的信息技术学科知识。

9) 了解人工智能学科交叉融合的基本知识体系,如认知科学、脑科学、生物智能、物理学、复杂网络等相关定义和应用场景。

10) 掌握深度学习与神经网络(中高级别)基础知识。

11) 掌握人工智能应用与实践(中高级别)中自然语言处理等基础知识。

12) 掌握运用数理逻辑方法和数学语言建构。

13) 掌握数据结构、数据收集与分析处理与工具应用。

14) 掌握统计、比较、排序不同方法在实践中的应用场景和特点。

级别(一到八级)

Jr. 人工智能与信息素养知识(学前阶段)

1) 了解图灵及其对人工智能的贡献。

2) 了解能够举例说明身边都有哪些人工智能的应用。

3) 了解并举例说明计算机视觉的应用。

4) 了解机器人道德伦理概念,能够根据实际场景判断机器人正确的行为。

5) 了解自动驾驶可能造成的危害。

6) 了解计算思维在生活中的应用,能够分解3步以内的简单任务。

7) 掌握统计数量的方法,能够正确对10以内的数字进行数物对应。

8) 掌握基本的比较方法,并根据比较结果进行有规律的排序。

9) 掌握根据物体的特征进行分类的方法。

10) 掌握在复杂问题中利用抽象思维如何提取关键因素。

1.人工智能与信息素养知识 一级

1.1了解团队合作在解决问题中的重要意义。

1.2了解模式识别,能在程序中发现规律,找到解决问题更简单的方法。

1.3了解在任务结束后进行归纳和总结的方法,能够进行知识的迁移。

1.4了解人工智能道德伦理概念,能够在多个场景中判断全部的机器人正确行为。

1.5了解基于实际应用场景示例的信息社会优势。

1.6了解计算机的五大构成部分:控制器、运算器、存储器、输出设备、输入设备。

1.7掌握统计数量的方法,能够正确对100以内的数字进行数物对应。

1.8掌握生活中事物的比较、分类、排序、测量等方式,进行人工智能相关的思维训练。

1.9掌握计算思维在生活中的应用,能够分解8步以内的较复杂的任务。

1.10掌握在程序运行过程中的试调技巧,运用排错思维修改程序直到正确。

1.11掌握运用流程图方法了解程序的基本结构:顺序结构、分支结构、循环结构。

1.12掌握运用流程图完成问题或任务分析。

2. 人工智能与信息素养知识 二级

2.1了解人工智能学科创立的时间及当时创立之初的主要人物的相关事迹或故事。(示例:艾伦·麦席森·图灵、约翰·麦卡锡、马文·明斯基、纳撒尼尔·罗彻斯特、克劳德·香农等;

2.2 了解阿西莫夫三定律及第零定律的形成缘起及发展过程。2.3 了解阿西莫夫三定律及第零定律的形成缘起及发展过程。

2.3了解计算机视觉的应用,并能明确判断使用场景。

2.4 了解计算机五大构成部分各部分之间如何协调工作的基本原理。

2.5 了解数字化表示信息的优势

2.6 了解计算机及网络的优势。

2.7 掌握通过简单的图示判断逻辑结构定义中的集合、线性结构、树形结构、图形结构数据元素关系。

2.8 掌握中国人工智能发展历史上的重要人物和故事。(示例:吴文俊、陆汝钤、张钹、王湘浩、蒋新松、李未、郑南宁、戴琼海、李德毅、何恺明、翟成祥、陆奇、贾扬清等)。

2.9掌握人工智能的主要使用场景,并发现技术的使用风险和可能带来的问题。

2.10掌握问题分析过程,能够利用流程图表示任务的关键过程。

2.11 掌握结构化程序设计的基本原则。

2.12 掌握二进制及十进制,并会查阅ASCII字符代码表。

3. 人工智能与信息素养知识 三级

3.1 了解人工智能的三起两落的时间点,以及最新一次人工智能兴起的重要标志性事件的原因。

3.2 了解什么是机器学习,以及机器学习与人工智能的关系。

3.3 了解人工智能可能引发的社会问题。

3.4 了解基于信息系统主要功能的实际应用场景。

3.5 了解弱人工智能及强人工智能的广义概念,并能够判断主要技术应用场景的归类。

3.6 了解图灵测试的基本原理和缘起。

3.7 掌握运用复杂流程图分析问题或任务。

3.8 掌握人脸识别的基本步骤。

3.9 掌握人工智能安全性相关问题。

3.10 掌握相应的信息获取、加工、处理工具,能够根据给定的任务选择适当的工具。

4. 人工智能与信息素养知识 四级

4.1 了解知识图谱的概念,熟悉知识图谱的技术原理和应用场景。

4.2 了解机器学习能够解决的问题(回归、分类、聚类、降维),重点考察前三个问题。

4.3 了解图像识别的概念,熟悉图像识别的技术原理和应用场景。

4.4 了解信息系统的组成、功能与开发过程。

4.5 了解信息技术的四大基本技术。

4.6 了解文本类、图像类、声音类数据处理的过程与机器学习之间的关系。

4.7 了解AlphaGO中涉及的人工智能算法的其他应用场景。

4.8 掌握专家系统的基本概念和处理问题方法逻辑,举例有代表性的专家系统应用案例。

4.9 掌握语音识别的基本步骤。

4.10 掌握什么是强化学习,它与有监督/无监督学习的区别。

4.11 掌握程序设计的基础知识,能够根据给定的问题选择或设计合适的算法。

4.12 掌握运用数字化工具在指定问题情境中求平均值的方法。

4.13 掌握基于复杂任务的模块化或系统化解决方法。

5. 人工智能与信息素养知识 五级

5.1 了解人脸识别中所用到的神经网络及主要特征。

5.2 了解相关的信息法律法规,具有良好的信息安全意识,具备良好的信息道德与伦理。

5.3 了解自然语言处理中所用到的神经网络及主要特征。

5.4 了解广度优先搜索算法、深度优先搜索算法的区别。

5.5 掌握K近邻算法的基本概念和算法原理,并能够列举出主要应用场景用途。

5.6 掌握监督学习与无监督学习之间的区别。

5.7 掌握语音识别、机器翻译等人工智能技术的基本原理。

5.8 掌握基于情感词典的情感分析基本步骤。

5.9 掌握电车难题引发的人工智能伦理问题。

5.10 掌握信息技术的发展脉络与发展趋势,以及产生的社会应用。

6. 人工智能与信息素养知识 六级

6.1了解人工智能三大学派的起源及主要研究方向和成果。

6.2掌握K均值算法的基本概念和算法原理,并能够列举出主要应用场景用途。

6.3能够根据样本特征的散点图分析K近邻算法或K均值算法的运行效果、问题及改进方法等。

6.4理解过拟合与欠拟合的概念,并能根据实际情景做出问题判断。

6.5掌握贪婪最佳优先搜索算法的基本概念和算法原理,能够在路径搜索场景中应用算法原理判断结果。

6.6了解关联规则学习的概念,能够对少量数据进行计算,得到支持度、置信度和提升度,并根据计算结果得出结论。

6.7了解遗传算法的概念,了解该算法与进化生物学的关系。

6.8了解当前自动驾驶技术的原理以及自动驾驶技术的探索方向。

7. 人工智能与信息素养知识 七级

7.1了解强化学习的定义及其与监督学习、无监督学习的区别。

7.2掌握线性回归算法的基本概念和算法原理,并能够列举出主要应用场景用途。

7.3能够根据样本特征的散点图分析线性回归算法的运行效果、问题及改进方法等。

7.4掌握A*算法的基本概念和算法原理,能够在路径搜索场景中应用该算法判断结果。

7.5理解深度学习与神经网络的概念,理解神经网络中神经元等概念。

7.6了解反向传播算法的概念及其算法原理。

7.7了解生成对抗网的概念。

8. 人工智能与信息素养知识 八级

8.1能够挑选适合某一场景或问题的人工智能算法。

8.2能够评价人工智能算法的执行效果并做出分析。

8.3能够对比不同搜索算法的异同,并根据场景选用适合的算法。

8.4了解大模型及生成式人工智能,了解其对人类日常生产生活可能造成的影响。

8.5了解扩散模型(diffusion models)、Transformer模型及其相关概念,如马尔科夫链、自注意力机制。

8.6了解GPT、DALL·E、Stable Diffusion、Midjourney等人工智能技术及其应用领域,能够正确理解人机协作的概念。

8.7广泛了解人工智能领域存在的伦理及法律问题,如“人工智能偏见”,并能举出具体实例。

D.应用领域

1. 评审标准

应用领域的评审标准如下表1所示。

表 1 应用领域的评审标准

评审类型

评分维度

评分标准

作品材料
(50%)

实用性

针对学习生产生活实际问题需求,背景清晰,目标明确。

创新性

在解决方案/系统设计/外观内部/算法模型等
具备原创性,并做了相关研究方法的对比。

真实性

作品或算法是由学生独立完成或全程参与,准确清晰写出自己参与的环节和内容,无技术理解错误或偏差。

艺术性

外观和内部需美观,与应用场景契合,用户界面体现清晰设计理念,有设计感。

智能性

使用或创新改进多项AI算法,包括:计算机视觉、自然语言处理、语音识别或生成、机器学习算法等,有完整的数据采集、训练调参、优化提升准确度的过程。

合理性

使用进度安排/角色分配/进度实施/成本控制等项目管理方法完成设计。

文档材料

提交材料与要求种类符合,材料撰写规范(包括摘要、问题背景、他人研究方法、思路框架、技术路线、测试优化和总结及参考文献)

研究报告
(20%)

报告摘要

简洁明了描述报告的目的、独特性、实现过程的途径和结果

作品概述

对作品创作规划的整体设计的概要描述、合理性、完整性;篇幅不超过800字;

实施方法

实施方法的科学性、方法新颖、工程术语准确、拥有思维导图、方法有迭代、工程技术手段合理

验证结果

有完整的测试结果的记录反馈、测评结果数据记载;

反馈总结

对实施、验证、模拟、结果过程的反馈总结的思考和优化记录

文献引用

注明引用文献的出处,方便其他研究者或者读者去进一步调查学习;

撰写技巧

条理清楚,脉络分明。运用顺叙,要注意剪裁得当,重点突出

答辩环节
(30%)

表达力

口齿清楚,流畅有力,有感染力说服力。

逻辑性

针对作品讲解思路清晰、有条理,有逻辑;

AI素养

考察在人工智能知识的灵活运用和解决问题的实践能力;在计算思维、系统思维、批判思维、设计思维的素养;

严谨性

充分且准确使用技术术语;全面缜密分析探究问题。

应变力

对评审专家的开放型问题、及现场突发现状等的思辨力和应变能力

2. 人工智能应用领域范围

2.1 智能家居

智能家居是以住宅为平台,利用综合布线技术、网络通信技术、 安全防范技术、自动控制技术、音视频技术将家居生活有关的设施集成,构建高效的住宅设施与家庭日程事务的管理系统,提升家居安全性、便利性、舒适性、艺术性,并实现环保节能的居住环境。比如:基于互联网和物联网控制的网络空调,可在炎炎夏日下班前提前半个小时打开空调,可在外出旅行时定时浇花,可根据天气自动开关的窗帘,可人机语音交互的照明和电视、可基于视频检测的安全控制、可提醒下单购物的冰箱等。

任务说明

我们已经步入智能化社会,但大家如果仔细观察我们的家里,会发现很多地方还没有智能化。请大家仔细观察家居生活,找出对其可以进行自动化、智能化改进的地方,把家居生活变得方便、快捷、绿色、安全。

2.2 智慧交通

智能交通是将先进的科学技术(信息技术、计算机技术、数据通信技术、传感器技术、自动控制技术、人工智能技术等)有效地综合运用于交通运输、服务控制和车辆制造,加强车辆、道路、使用者三者之间的联系,从而形成一种保障安全、提高效率、改善环境、节约能源的综合运输系统。

比如电子收费、实时交通信息服务、无人驾驶、电子车牌、车牌识别、违章抓拍等。

任务说明

人人离不开每日出行,虽然智能交通已经遍布各个角落,比如智能信号配时、公交电子车牌、自动导航、智能驾驶、违章抓拍等。但相信仔细和聪明的大家还是会发现日常出行中可以采用各种技术手段改进的地方,把出行交通方便、快捷、绿色、安全。

2.3 智慧农业

智慧农业就是将物联网技术运用到传统农业中去,运用传感器和软件通过移动平台或者电脑平台对农业生产进行控制,使传统农业更具有“智慧”。除了精准感知、控制与决策管理外,从广泛意义上讲,智慧农业还包括农业电子商务、食品溯源防伪、农业休闲旅游、农业信息服务等方面的内容。总之,通过各种技术,实现农业精细化、高效化、绿色化发展,让农业更高效,食品更绿色,环境更安全。

项目方向

本项目不设置任务,仅设置项目方向。项目方向包括但不限于智慧种植(空气、温度、湿度、光照、CO2、营养的精准感知和控制及成本控制)、农业大数据、作物建模、土壤诊断、智能排产、食品溯源、植物生长仿真等。

2.4 智慧医疗

智慧医疗通过打造健康档案区域医疗信息平台,利用最先进的物联网技术,实现患者与医务人员、医疗机构、医疗设备之间的互动,逐步达到信息化。

项目方向

项目不设置任务,仅设置项目方向。项目方向包括但不限于健康医疗大数据、医学人工智能、医疗机器人、家庭健康系统、无障碍助残助老系统、特殊人群健康监测和照护等

3. 作品提交

(1)任务说明

以每次测评正式发布的任务说明为准。

(2)作品要求

作品主要包括制作完成的实物、开发的软件系统、设计方案及系统原型等。

作品使用的设备、器材、编程平台、外观和材料不限。以个人/集体(2-3人)为单位完成作品,可有1-3位辅导老师。

(3)作品提交

作品提交学会素养测评工作组网站AICE.caa.org.cn(报名对应的评审项目后,在活动作品提交处进行提交)。

(4)提交要求

研究报告:格式不限,中英文皆可,word/pdf格式,字数至少2000字。

附件:硬件清单、软件源代码、研究日志、实验记录等。

视频:不超过1分钟,展示实物模型的功能和创新点。

(5)作品评审

测评工作组组织评审委员会对作品进行线上或者线下评审。

评审过程为现场展示+项目答辩。

通过评审后,作者将获得学会颁发的等级证书。

人工智能应用实践

E.算法基础

1. 评审标准

算法基础的评审标准如下表1所示。

表 1 算法基础的评审标准

评审类型

评分维度

评分标准

作品材料
(50%)

实用性

针对学习生产生活实际问题需求,背景清晰,目标明确。

创新性

在解决方案/系统设计/外观内部/算法模型等
具备原创性,并做了相关研究方法的对比。

真实性

作品或算法是由学生独立完成或全程参与,准确清晰写出自己参与的环节和内容,无技术理解错误或偏差。

艺术性

外观和内部需美观,与应用场景契合,用户界面体现清晰设计理念,有设计感。

智能性

使用或创新改进多项AI算法,包括:计算机视觉、自然语言处理、语音识别或生成、机器学习算法等,有完整的数据采集、训练调参、优化提升准确度的过程。

合理性

使用进度安排/角色分配/进度实施/成本控制等项目管理方法完成设计。

文档材料

提交材料与要求种类符合,材料撰写规范(包括摘要、问题背景、他人研究方法、思路框架、技术路线、测试优化和总结及参考文献)

研究报告
(20%)

报告摘要

简洁明了描述报告的目的、独特性、实现过程的途径和结果

作品概述

对作品创作规划的整体设计的概要描述、合理性、完整性;篇幅不超过800字;

实施方法

实施方法的科学性、方法新颖、工程术语准确、拥有思维导图、方法有迭代、工程技术手段合理

验证结果

有完整的测试结果的记录反馈、测评结果数据记载;

反馈总结

对实施、验证、模拟、结果过程的反馈总结的思考和优化记录

文献引用

注明引用文献的出处,方便其他研究者或者读者去进一步调查学习;

撰写技巧

条理清楚,脉络分明。运用顺叙,要注意剪裁得当,重点突出

答辩环节
(30%)

表达力

口齿清楚,流畅有力,有感染力说服力。

逻辑性

针对作品讲解思路清晰、有条理,有逻辑;

AI素养

考察在人工智能知识的灵活运用和解决问题的实践能力;在计算思维、系统思维、批判思维、设计思维的素养;

严谨性

充分且准确使用技术术语;全面缜密分析探究问题。

应变力

对评审专家的开放型问题、及现场突发现状等的思辨力和应变能力

2. 人工智能算法基础范围

2.1 大数据

大数据是人工智能的基石。人工智能是一项比较基础的研究,主要涉及知识表示、智能搜索、推理、规划、知识获取、模式识别、神经网络、智能算法、机器学习等等。其中,机器学习作为人工智能的一个重要分支得到了长足发展,目前的深度学习、强化学习、深度强化学习是这个方向的发展前沿。而大数据主要利用算法技术进行数据内容处理和挖掘。

2.2 机器视觉

机器视觉是人工智能正在快速发展的一个分支。简单说来,机器视觉就是用机器代替人眼来做测量和判断。机器视觉系统是通过机器视觉产品将被摄取目标转换成图像信号,传送给专用的图像处理系统,得到被摄目标的形态信息,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。

包括图像处理、机械工程技术、控制、电光源照明、光学成像、传感器、模拟与数字视频技术、计算机软硬件技术(图像增强和分析算法、图像卡、 I/O卡等)。一个典型的机器视觉应用系统包括图像捕捉、光源系统、图像数字化模块、数字图像处理模块、智能判断决策模块和机械控制执行模块。

2.3 自然语言处理

人工智能已经成为大众耳熟能详的词汇,而自然语言处理却很少有人了解。自然语言处理(Natural Language Processing,NLP)属于人工智能的一个子领域,是指用计算机对自然语言的形、音、义等信息进行处理,即对字、词、句、篇章的输入、输出、识别、分析、理解、生成等的操作和加工。它对计算机和人类的交互方式有许多重要的影响。人类语言经过数千年的发展,已经成为一种微妙的交流形式,承载着丰富的信息,这些信息往往超越语言本身。自然语言处理将成为填补人类通信与数字数据鸿沟的一项重要技术。

自然语言处理的目标是弥补人类交流(自然语言)与计算机理解(机器语言)之间的差距,最终实现计算机在理解自然语言上像人类一样智能。未来,自然语言处理的发展将使人工智能可以逐渐面对更加复杂的情况、解决更多的问题。

2.4 机器学习

机器学习最基本的做法,是使用算法来解析数据、从中学习,然后对真实世界中的事件做出决策和预测。与传统的为解决特定任务、硬编码的软件程序不同,机器学习是用大量的数据来“训练”,通过各种算法从数据中学习如何完成任务。

举个简单的例子,当我们浏览网上商城时,经常会出现商品推荐的信息。这是商城根据你往期的购物记录和冗长的收藏清单,识别出这其中哪些是你真正感兴趣,并且愿意购买的产品。这样的决策模型,可以帮助商城为客户提供建议并鼓励产品消费。

机器学习直接来源于早期的人工智能领域,传统的算法包括决策树、聚类、贝叶斯分类、支持向量机、EM、Adaboost等等。从学习方法上来分,机器学习算法可以分为监督学习(如分类问题)、无监督学习(如聚类问题)、半监督学习、集成学习、深度学习和强化学习。

传统的机器学习算法在指纹识别、基于Haar的人脸检测、基于HoG特征的物体检测等领域的应用基本达到了商业化的要求或者特定场景的商业化水平,但每前进一步都异常艰难,直到深度学习算法的出现。

2.5 知识工程(知识图谱、专家系统)

在人工智能中,有很多技术都是能够帮助人工智能去解决很多问题的,比如说图灵测试、机器学习、人工神经网络、深度学习等等。当然只有这些还远远不够,人工智能还涉及到了知识工程。

一般认为,人工智能分为计算智能、感知智能和认知智能三个层次。简要来讲,计算智能即快速计算、记忆和储存能力;感知智能,即视觉、听觉、触觉等感知能力,当下十分热门的语音识别、语音合成、图像识别即是感知智能;认知智能则为理解、解释的能力。

运用已有的知识开始进行启发式的解题,并在解题中不断修正旧知识,获取新知识,从而丰富和深化已有的知识,然后再在一个更高的层次上运用这些知识求解问题,如此循环往复,螺旋式上升,直到把问题解决为止。

把知识工程这种模式应用到计算机中,它能够帮助机器学习和获取到更多的知识。对知识工程的简单总结就是一种模拟人类专家解决领域问题的计算机程序系统。

3. 作品提交

(1)任务说明

以每次测评正式发布的任务说明为准。

(2)作品要求

作品主要包括制作完成的实物、开发的软件系统、设计方案及系统原型等。

作品使用的设备、器材、编程平台、外观和材料不限。以个人/集体(2-3人)为单位完成作品,可有1-3位辅导老师。

(3)作品提交

作品提交学会素养测评工作组网站AICE.caa.org.cn(报名对应的评审项目后,在活动作品提交处进行提交)。

(4)提交要求

研究报告:格式不限,中英文皆可,word/pdf格式,字数至少2000字。

附件:硬件清单、软件源代码、研究日志、实验记录等。

视频:不超过1分钟,展示实物模型的功能和创新点。

(5)作品评审

测评工作组组织评审委员会对作品进行线上或者线下评审。

评审过程为现场展示+项目答辩。

通过评审后,作者将获得学会颁发的等级证书。

参考资料:

AICE青少年人工智能核心素养测评大纲说明(202311)_青少年人工智能核心素养

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值