- 博客(6)
- 收藏
- 关注
原创 【论文阅读 || 2025 || AAAI || MambaYOLO:一种基于状态空间模型的简单目标检测基线】
在深度学习技术飞速发展的推动下,YOLO系列为实时目标检测器树立了新标杆。此外,基于Transformer的架构已成为该领域最强大的解决方案,通过大幅扩展模型的感受野实现了显著性能提升。然而这种改进也带来了代价——自注意力机制的二次复杂度增加了模型的计算负担。为解决这一问题,论文提出了一种简单却有效的基线方法Mamba YOLO。结构化状态空间序列模型S4和 Mamba,其根植于 SSM ,两者均源自一个连续系统,该系统通过隐式潜在中间状态h(t)∈ R 将单变量序列x(t)∈ R 映射到输出序列y(t)
2026-01-05 17:51:02
923
原创 【论文阅读 | 2024 | PR |ICAFusion:迭代交叉注意力引导的多光谱目标检测特征融合】
多光谱图像的有效特征融合在多光谱目标检测中具有关键作用。现有研究虽已证明卷积神经网络在特征融合中的有效性,但这些方法因局部特征交互的固有缺陷,容易因图像错位导致性能下降。为解决这一问题,我们提出了一种新型双交叉注意力变换器框架,通过建模全局特征交互并同步捕获跨模态互补信息,显著提升了目标特征的区分度。该框架通过查询引导的交叉注意力机制增强特征增强效果,但堆叠多个变换器模块会导致参数量激增和空间复杂度升高。为此,我们借鉴人类知识梳理过程,提出迭代交互机制,通过模块化多模态变换器间的参数共享。
2025-12-14 13:52:28
691
原创 【论文阅读 | ECCV | 2024 | DAMSDet:具有竞争性查询选择与自适应特征融合的动态自适应多光谱检测变换器】
红外-可见光目标检测旨在通过融合红外与可见光图像的互补信息,实现全天候稳定的目标检测。然而,互补特征的高度动态变化特性及普遍存在的模态错位问题,使得互补信息的融合变得困难。本文提出动态自适应多光谱检测变换器(DAMSDet)以同时解决这两个挑战。具体而言,我们创新性地提出模态竞争性查询选择策略,为每个目标提供有效的先验信息。该策略可动态选择每个目标的基础显著模态特征表示。为有效挖掘互补信息并适应模态错位场景,我们设计了多光谱可变形交叉注意力模块,自适应采样并聚合红外与可见光图像的多语义层级特征。
2025-12-08 19:00:51
675
原创 【论文阅读 | CVPR 2023 | MetaFusion:基于目标检测的元特征嵌入实现的红外与可见光图像融合】
将红外与可见光图像融合能为后续目标检测任务提供更丰富的纹理细节。检测任务又能提供目标的语义信息,从而优化红外与可见光图像的融合效果。针对两个不同层级任务之间的特征鸿沟问题,本文提出基于目标检测的元特征嵌入技术实现红外与可见光图像融合。
2025-12-07 19:57:01
1176
2
原创 【论文阅读 | arXiv | IVGF:融合引导的红外和可见光通用框架】
现有方法多采用任务特定框架,导致跨任务泛化能力受限。本文提出融合导向型红外可见通用框架IVGF,可轻松扩展至多种高级视觉任务。首先采用SOTA红外可见基础模型提取通用表征,继而设计特征增强模块和标记增强模块分别优化特征图与标记的语义信息。创新性地引入注意力引导融合模块,通过探索双模态互补信息实现高效融合。同时采用切割混合增强策略进行数据增强,进一步提升模型挖掘双模态区域互补性的能力。本文提出的方法框架包含五大核心组件:两个模态专属主干网络特征增强模块标记增强模块注意力引导融合模块以及任务专用头。
2025-12-07 19:56:22
977
原创 PyTorch实战:手把手教你搭建CV模型
总结从零搭建CV模型的核心步骤,强调PyTorch的灵活性与扩展性,鼓励读者尝试更复杂的任务(如目标检测或图像分割)。注:实际撰写时可结合代码片段、可视化图表或实验对比数据增强文章深度。
2025-11-02 00:01:29
301
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅