用python实现(Fibonacci sequence)斐波那契数列的三种方法

本文介绍了斐波那契数列的定义以及三种不同的代码实现方法:递归、循环迭代和动态规划。展示了如何用Python编写函数计算第10和第15个斐波那契数,并解释了递归和动态规划在求解过程中的优势。
摘要由CSDN通过智能技术生成

题目

斐波那契数列

斐波那契数列(Fibonacci sequence),又称黄金分割数列,指的是这样一个数列:0、1、1、2、3、5、8、13、21、34、……。

解析

在数学上,费波那契数列是以递归的方法来定义:
F n F_n Fn = 0 (n=0)
F 1 F_1 F1 = 1 (n=1)
F n F_n Fn = F n − 1 F_{n-1} Fn1+ F n − 2 F_{n-2} Fn2 (n=>2)

代码实现

  1. 第一种方法
def fib(n):
    a, b = 1, 1
    for i in range(n - 1):
        a, b = b, a + b
    return a


# 输出了第10个斐波那契数列
print(fib(10))
  1. 第二种方法
# 使用递归
def fib(n):
    if n == 1 or n == 2:
        return 1
    return fib(n - 1) + fib(n - 2)


# 输出了第15个斐波那契数列
print(fib(15))
  1. 第三种方法
def fib(n):
    if n == 1:
        return [1]
    if n == 2:
        return [1, 1]
    fibs = [1, 1]
    for i in range(2, n):
        fibs.append(fibs[-1] + fibs[-2])
    return fibs


# 输出前15个斐波那契数列
print(fib(15))

运行结果

1、
在这里插入图片描述
2.
在这里插入图片描述
3.
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

@撒娇小小怪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值