神经网络模型基础
1. 网络节点
神经网络模型由相互连接的节点组成,这些节点的设计灵感来源于生物神经元。不过,神经网络模型中的节点通常比生物神经元简单很多,仅包含对网络整体运行至关重要的特征,主要有以下几点:
- 节点可以处于不同状态,包括不同的活动水平以及可能不同的内部变量值。
- 节点之间相互连接,并通过这些连接相互影响。
- 一个节点对其他节点的影响取决于该节点自身的活动以及连接的属性(如兴奋或抑制、强或弱等)。
1.1 神经元与突触
神经元有多种类型,它们之间的相互作用方式也各不相同。神经元具有输出通路和输入通路,分别用于影响其他神经元和接收其他神经元的影响。
- 尖峰神经元 :其显著特征是能够产生称为尖峰或动作电位的电脉冲。这些脉冲可以沿着神经元的轴突传播,轴突是从细胞体延伸出来的细长分支结构,长度从几毫米到几十厘米不等,这使得神经元之间能够进行短距离和长距离的相互作用。例如,每立方毫米的小鼠皮层大约包含10⁵个神经元和估计1到3.5公里的轴突,每个神经元大约与8000个其他神经元相连。神经元通过突触相互连接,在突触处,一个神经元(突触前神经元)的轴突与另一个神经元(突触后神经元)的树突相遇。当突触前神经元轴突上的尖峰到达化学突触时,会释放化学物质(神经递质),这些神经递质可以兴奋或抑制突触后神经元,即通过改变神经元的电位来促进或抑制尖峰的产生。这种影响的大小取决于突触前神经元释放的神经递质的量以及突触后神经元对神经递质的敏感性,这些因素共同决定了突触的“强度”。基础研究表明,像习惯化和经典条件反射这样的基本学习现象与突触数量和效能的变化有关,而非神经元之间连接模式的变化。尖峰神经元会跟踪
超级会员免费看
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



