18:对称的二叉树
请实现一个函数,用来判断一棵二叉树是不是对称的。如果一棵二叉树和它的镜像一样,那么它是对称的。
例如,二叉树 [1,2,2,3,4,4,3] 是对称的。
1 / \ 2 2 / \ / \ 3 4 4 3
但是下面这个 [1,2,2,null,3,null,3] 则不是镜像对称的:
1 / \ 2 2 \ \ 3 3
示例 1:
输入:root = [1,2,2,3,4,4,3]
输出:true
示例 2:
输入:root = [1,2,2,null,3,null,3]
输出:false
限制:
0 <= 节点个数 <= 1000
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/dui-cheng-de-er-cha-shu-lcof
思路:
从根节点开始dfs处理一整颗树,每次比较左子树和右子树的元素,如果一样了,那么我们就递归处理当前左子树的左节点和右子树的右节点并且还要比较左子树的右节点和右子树的左节点。如果不一样直接返回false,如果一样,那就继续递归。直到两个树都为空。
图解:
代码:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
bool isSymmetric(TreeNode* root) {
if(!root) return true;
return dfs(root->left, root->right);
}
bool dfs(TreeNode* p, TreeNode* q) {
if(!p || !q) return !p && !q; //如果其中一个空了就不用比较了。直接返回就行。 除非两个同时空了才为真。
if(p->val != q->val) return false;
return dfs(p->left, q->right) && dfs(p->right, q->left); //看图解
}
};