2020-10-16

这篇博客展示了如何在Python中使用Keras库从mnist.npz文件直接读取MNIST数据集的训练和测试数据。通过np.load()函数加载文件,并分别获取训练和测试集的图像和标签,然后打印出它们的形状。
摘要由CSDN通过智能技术生成

keras直接读取mnist.npz文件中的数据

https://pan.baidu.com/s/1C3c2Vn-_616GqeEn7hQQ2Q 可以下载到mnist.npz,对大陆人。
之后,可以直接加入到内存中:

import tensorflow as tf
import numpy as np
with np.load('mnist.npz') as f:
    i0,l0 = f['x_train'], f['y_train']
    i1,l1 = f['x_test'], f['y_test']
print(i0.shape)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值