【数据库】数据库切分

知识共享许可协议 版权声明:署名,允许他人基于本文进行创作,且必须基于与原先许可协议相同的许可协议分发本文 (Creative Commons

前言

     小编最近学习mycat中间件的内容,看了一本书《mycat权威指南》,里面内容非常丰富,入门篇、高级进阶篇、生产实践篇和开发篇,对小编来说非常有价值。现在简单总结一下入门篇中的内容。

数据库切分为什么出现

 一、为什么出现数据库切分

   在互联网时代,海量数据的存储与访问成为系统设计与使用的瓶颈问题,最典型的场景有两种类型:联机事务处理(OLTP)和联机分析处理(OLAP),同时因为传统数据库不可切分,NoSQL数据库只能是一种补充不能替代传统数据库,因此需要借助第三方处理,实现数据切分。

二、OLTP与OLAP对比

三、数据库分类

  1.两类系统有多种技术实现方案,其中存储部分的数据库主要分为两大类:关系型数据库与NoSQL数据库。

  2.关系型数据库

   是建立在关系模型基础上的数据库,使用集合代数等数学概念和方法处理数据库中的数据。主流的有oracle、DB2、MS SQL Server 和MySQL。

  3.NoSQL数据库

   全称Not only SQL,非关系型数据库。主要分为临时性键值存储:memcached、Redis,永久性键值存储:ROMA、Redis,面向文档的数据库:MongoDB、CouchDB,面向列的数据库(Cassandra、HBASE)。

 四、两类数据库对比

   单机单库性能瓶颈,扩展困难,无法满足日益增长的海量数据存储及其性能要求,而NoSQL根本性的优势在于简单、易于大规模分布式扩展,读写性能非常高。

   

 

什么是数据切分

一、概念

   指通过某种特定的条件,将同一个数据库中的数据分散存放到多个数据库(主机)上面,达到分散单台设备负载的效果。

二、两种模式

1. 垂直拆分

   按照不同的表(或者Schema)切分到不同的数据库(主机)上。一个数据库由很多表构成,每张表对应不同的业务,垂直切分是按照业务将表进行分类,分布到不同数据库上。

 

 2.水平切分

    根据表中数据的逻辑关系,将同一个表中的数据按照某种条件拆分到多台数据库(主机)上。

三、两种模式的对比

1.垂直切分

 优点:

  • 拆分后业务清晰,拆分规则明确
  • 系统间整合或扩展容易
  • 数据维护简单

  缺点:

  • 部分业务表(很难独立)无法join   ,只能通过接口方式解决,提高系统复杂度
  • 受每种业务不同的限制存在单库性能瓶颈,不易数据扩展和性能提高
  • 事务处理复杂

单库读写与存储瓶颈需要水平拆分来解决。

2.水平切分

  相对垂直拆分,水平拆分不是将表做分类,而是将每张表按照某个字段的某种规则分散到多个库之中。

  水平拆分数据需要定义分片规则,关系型数据库是行列的二维模型,拆分的第一原则就是找到拆分维度。

 几种典型的分片规则包括:

  •  按照用户ID求模,将数据分散到不同库,相同数据用户的数据被分到一个库中
  • 按照日期划分
  • 按照某个特定字段求模或根据特定范围划分

 优点:

  • 拆分规则抽象好,数据库可以做join操作
  • 不存在单库大数据,高并发的性能瓶颈
  • 应用端改造较少
  • 提高了系统的稳定性和负载能力

缺点:

  • 拆分规则难以抽象
  • 分片事务一致性难以解决
  • 数据多次扩展难度和维护量极大
  • 跨库join性能较差

 3.两种模式共同的特点缺点

  • 引入分布式事务问题
  • 跨节点join问题
  • 跨节点合并排序分页问题
  • 多数据源管理问题

4.数据源管理方案

  A 客户端模式

   每个应用程序模块中配置管理自己需要的一个或多个数据源,直接访问各个数据库,在模块内完成数据的整合;

 B 中间代理层

   中间代理层统一管理所有的数据源,后端数据库集群对前端应用程序透明。这就是mycat数据库中间件 对数据切分的解决方案。

数据切分经验

  1. 能不切分尽量不切分
  2. 一定要选择合适的切分规则
  3. 尽量通过数据冗余或表分组(Table Group)来降低跨库join的可能
  4. 数据库中间件对数据join实现的优劣难以把握,实现高性能的难度极大,业务读取尽量少使用多表join

   官网推荐:http://www.mycat.io/,里面有书籍。

                                                                           感谢您的访问!

展开阅读全文

没有更多推荐了,返回首页