目录
2 刘克《马尔科夫决策过程理论与应用》1.2节例题及代码结果
1 胡运权《运筹学》211页题目及理论分析
1.1 题目介绍
1.2 Matlab实现
%输入参数为:决策一的状态转移矩阵和奖励矩阵;决策二的状态转移矩阵和奖励矩阵
%输出参数为:决策一的期望值与决策;决策二的期望值与决策
function [f1,d1,f2,d2] = markovOpt(P1, R1,P2,R2,N)
if N == 1
Q1 = MatrixRowMulti(P1,R1);
Q2 = MatrixRowMulti(P2,R2);
[f1,d1] = max([Q1(1), Q2(1)]);
[f2,d2] = max([Q1(2), Q2(2)]);
% [f1,d1,f2,d2] = firstDecision(P1,R1,P2,R2);
else
Q1 = MatrixRowMulti(P1,R1);
Q2 = MatrixRowMulti(P2,R2);
[ref1,~] = max([Q1(1), Q2(1)]);
[ref2,~] = max([Q1(2), Q2(2)]);
iter = 1;
while iter ~= N
ref = [ref1;ref2];
tmp1 = [Q1(1,1) + P1(1,:) * ref(:,1); Q2(1,1) + P2(1,:) * ref(:,1)];
tmp2 = [Q1(2,1) + P1(2,:) * ref(:,1); Q2(2,1) + P2(2,:) * ref(:,1)];
[f1,d1] = max(tmp1);
[f2,d2] = max(tmp2);
ref1 = f1;
ref2 = f2;
% Q1 = [tmp1(1,1);tmp2(1,1)];
% Q2 = [tmp1(2,1);tmp2(2,1)];
% 没搞明白此处Q为什么不用更新
iter = iter + 1;
end
end
end
验证代码:
%胡运权运筹学教程上的例题
P1 = [0.5,0.5; 0.4,0.6];
R1 = [9,3; 3,-7];
% Q1 = MatrixRowMulti(P1,R1)
P2 = [0.8,0.2; 0.7,0.3];
R2 = [4,4;1,-19];
% Q2 = MatrixRowMulti(P2,R2)
% %f为报酬
% [f1,d1] = max([Q1(1), Q2(1)])
% [f2,d2] = max([Q1(2), Q2(2)])
%多阶段调度的例子
[f1,d1,f2,d2] = markovOpt(P1,R1,P2,R2,1000);
6 1 -3 1 8.2 2 -1.7 2 10.22 2 0.23 2 12.222 2 2.223 2 14.2222 2 4.2223 2 16.22222 2 6.22223 2 18.222222 2 8.222223 2 20.2222222 2 10.2222223 2 22.22222222 2 12.22222223 2 24.222222222 2 14.222222223 2 |
可见,工厂应该选择策略而,也就是打广告的方式才能够获得最大的总期望收益
1.3 使用Lingo求解
代码对模型的不等式做了移项处理,即将P移到不等式的左边
min = v22;
!v_ij标识阶段i处于状态j的期望奖励值
v11 >= 6;
v12 >= -3;
- 0.5 * v11 - 0.5 * v12 + v21 >= 6;
- 0.4 * v11 - 0.6 * v12 + v22 >= -3;
- 0.8 * v11 - 0.2 * v12 + v21 >= 4;
- 0.7 * v11 - 0.3 * v12 + v22 >= -5;
- 0.5 * v21 - 0.5 * v22 + v31 >= 6;
- 0.4 * v21 - 0.6 * v22 + v32 >= -3;
- 0.8 * v21 - 0.2 * v22 + v31 >= 4;
- 0.7 * v21 - 0.3 * v22 + v32 >= -5;
- 0.5 * v31 - 0.5 * v32 + v41 >= 6;
- 0.4 * v31 - 0.6 * v32 + v42 >= -3;
- 0.8 * v31 - 0.2 * v32 + v41 >= 4;
- 0.7 * v31 - 0.3 * v32 + v42 >= -5;
!将值函数定义为自由变量
@free(v11); @free(v12);
@free(v21); @free(v22);
@free(v31); @free(v32);
@free(v41); @free(v42);
1.4 使用Cplex建模及求解
dvar float v11; dvar float v12;
dvar float v21; dvar float v22;
dvar float v31; dvar float v32;
dvar float v41; dvar float v42;
minimize v41;
subject to{
v11 >= 6;
v12 >= -3;
- 0.5 * v11 - 0.5 * v12 + v21 >= 6;
- 0.4 * v11 - 0.6 * v12 + v22 >= -3;
- 0.8 * v11 - 0.2 * v12 + v21 >= 4;
- 0.7 * v11 - 0.3 * v12 + v22 >= -5;
- 0.5 * v21 - 0.5 * v22 + v31 >= 6;
- 0.4 * v21 - 0.6 * v22 + v32 >= -3;
- 0.8 * v21 - 0.2 * v22 + v31 >= 4;
- 0.7 * v21 - 0.3 * v22 + v32 >= -5;
- 0.5 * v31 - 0.5 * v32 + v41 >= 6;
- 0.4 * v31 - 0.6 * v32 + v42 >= -3;
- 0.8 * v31 - 0.2 * v32 + v41 >= 4;
- 0.7 * v31 - 0.3 * v32 + v42 >= -5;
};
上述代码得到结果,只需更改对应的目标函数,即可得到与下表是一致的结果:
2 刘克《马尔科夫决策过程理论与应用》1.2节例题及代码结果
2.1 题目
2.2 例题分析
决策者可以做出两种决策:
决策一:采用行动a1和行动a2;对应概率矩阵和奖励,见代码中的P11和R11
决策二:采用行动a1和行动a3;对应概率矩阵和奖励,见代码中的P12和R12
2.3 代码结果
%刘克 马尔科夫决策过程理论及应用 1.2节例题1.1的求解
P11 = [0.7,0.3;0.6,0.4];
R11 = [10,10; -5, -5];
P12 = [0.7,0.3; 0.4,0.6];
R12 = [10,10; -2,-2];
iterCnt = 10;
resault = zeros(iterCnt,4);
for i = 1:iterCnt
[resault(i,1),resault(i,2),resault(i,3),resault(i,4)] = markovOpt(P11,R11,P12,R12,i);
end
resault
10 1 -2 2 16.4 1 0.8 2 21.72 1 5.16 1 26.752 1 10.096 1 31.7552 1 15.0896 1 36.75552 1 20.08896 1 41.755552 1 25.088896 1 46.7555552 1 30.0888896 1 51.75555552 1 35.08888896 1 56.755555552 1 40.088888896 1 |
可见;决策者,应该选择决策一,即快修的方式能够在多阶段后获得最大收益。