区块链究竟是个啥?浅显易懂地介绍区块链技术


话说这阵子区块链火的不要不要的
各种新闻利好利空轮番轰炸。这个币那个链头昏眼花
这里写图片描述

那么区块链到底是个啥玩意呢
这里写图片描述

要说区块链,肯定逃不开的是比特币和他的创始人中本聪
这里写图片描述
(中本聪其实目前身份不明,右边那个是被广泛谣传的同名同姓中本聪)

那这货和人民币美元有什么不一样呢?
最大的特点是,它没有发行机构,也没有中央银行!
它是一个大家一起参与的记账系统!
这里写图片描述

简单说,银行或者支付宝给你记账
记了你账上有6块钱,你就有6块钱
请吃麻辣烫,“pia叽”一划就好了
这里写图片描述
这叫中心化管理

而要是没有中心机构的话
只有大家都一起来记账,才能保证让人心服口服

这就是所谓去中心化
这里写图片描述
究竟是为了自由、理想,还是反垄断或者公平公正
大家见仁见智啦~

那么问题来了,凭啥大家要一起帮你记账呢?
小本本不要钱啊???
这里写图片描述

中本聪说:
大家一起记,第一个算好记好的人发奖励!
这里写图片描述

于是所有记账的人都变成了挖矿的矿工
这里写图片描述

噢不对不是搬砖是挖矿
这里写图片描述

在这里要提一个知识点:哈希函数
这里写图片描述

这是一个神奇的函数~
不管多大多小的A输入,固定大小的B输出!

而且从B没法倒推出A!

而且A改一个字,B面目全非!

矿工们要做的就是把记的账打包成区块,加上一个随机数
进行哈希函数的运算
然后不断改随机数来尝试,直到“叮!”
得到的一个B前面有足够多的0(小于规定值)
那就成功挖到矿了
这里写图片描述

要记得赶紧广播到全网,让所有人验证同步了才有奖励噢~

那能不能收到别人挖到矿的信息,不理他呢?
那样的话不是乱套了嘛?
这里写图片描述

为此中本聪说了两句话:

一:“所有区块的开头,要加进上一个区块的哈希值!”
于是所有的区块通过一个接一个的哈希值的形式
被连成了一条链条~

(主角登场BGM)

区块链就此诞生!
这里写图片描述

整个体系牵一发而动全身,轻易篡改不得!

二:“所有人以最长链为准!”
于是你要是不理会别人挖到矿的消息,自顾自挖的话…
你就会处在一条短链上
你好不容易挖出个合格区块,广播出去的消息人家一看:
“切,这么短!”
然后就没有然后了…
这里写图片描述

于是记账的事就这样成了
这里写图片描述

而比特币的用户呢,在线上,并没有什么实名制认证,对于身份的判定完全依赖公私钥非对称加密机制。这个解释起来其实也很复杂啦懂技术的懂~
作为用户最重要的就是要把私钥保管好别泄露!!
理解成账号密码就好啦~~
(其实主要是太复杂我懒得解释了)
这里写图片描述

比特币大概就是这么个东西了,那么区块链还能怎么耍呢?
这里写图片描述

除了记账,记录任何信息其实都是ok的
所以通过这种技术
可以达到一个可追溯、不可篡改的数据库的效果。
这里写图片描述

这样说的话,程序员朋友们可能会更感兴趣一些~
这里写图片描述

买是买不到的~
想玩得自己搭自己接,现在市面上已有的链有好多
什么以太坊啊Hyperledger啊需要自己研究搭建环境!

除非
这里写图片描述
接入我们布萌~
这里写图片描述
**提供API接口!

没有开发语言限制!

注册即可调用!**
这里写图片描述

好了不多说了
快去[布萌官网]注册,一起玩耍呀​这里写图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 一阶线性齐次常系数的微分方程的形式是这样的: dy/dx + p(x) * y = q(x) 这个方程的解可以使用常用的积分因式法来求得。 首先, 我们将方程化为这种形式: dy/y = (q(x) - p(x) * y) dx 然后我们可以将左边积分一下: ln|y| = ∫ (q(x) - p(x) * y) dx + C 在将右边积分: ln|y| = ∫ q(x) dx - ∫ p(x) * y dx + C 我们再将积分移到左边: ln|y| - ∫ p(x) * y dx = ∫ q(x) dx + C 最后, 我们可以使用积分因式将这个方程变形成这样: y = C * exp(∫ p(x) dx) 这样, 我们就可以使用∫ p(x) dx来求解这个方程了。 ### 回答2: 一阶线性齐次常系数的微分方程可以写成形式: dy/dx + p(x)y = 0 其中,dy/dx表示y对x的导数,p(x)是一个给定的函数。要求解该微分方程,可以采用分离变量的方法。 首先,将方程写成dy/y = -p(x)dx的形式。然后,对方程两边同时进行积分。 ∫(1/y)dy = -∫p(x)dx 对左边积分得到ln|y| + C1 (其中C1是常数),右边积分得到-∫p(x)dx。 整理后得到 ln|y| = -∫p(x)dx + C1 接着,我们可以通过去指数化简方程。将上述方程两边同时取指数得到|y| = e^(-∫p(x)dx + C1)。 再进一步化简,我们知道指数函数的性质e^(a+b) = e^a * e^b,因此可以写成 |y| = e^C1 * e^(-∫p(x)dx)。 再次化简,e^C1为常数,记作±C2。因此可得到常数C2与|y|的关系式为 |y| = C2 * e^(-∫p(x)dx)。 最后,我们可以确定常数C2的正负号。如果|y| = 0,那么此时y = 0,因此常数C2可以取为0。如果|y| ≠ 0,那么常数C2取任意非零值。 综上所述,一阶线性齐次常系数的微分方程的解为 y = C2 * e^(-∫p(x)dx),其中C2为常数,可以为0或任意非零值。 ### 回答3: 一阶线性齐次常系数的微分方程可以写成形如dy/dx + p(x)y = 0的方程。其中p(x)是已知函数,y是未知函数。 首先,我们可以根据方程的形式,将其转化为可以分离变量的形式。将dy/dx = -p(x)y,移项得 dy/y = -p(x)dx。 然后,我们对方程两边同时进行积分。对左边的dy/y进行积分得到ln|y|,对右边的-p(x)dx进行积分得到∫-p(x)dx。 接下来,我们引入常数C,表示积分上的任意常数。将上面的积分结果代入方程中,得到ln|y| = ∫-p(x)dx + C。 最后,我们将方程中的绝对值去掉,得到y = Ce^(-∫p(x)dx)。 至此,我们得到了一阶线性齐次常系数微分方程的一般解。其中C为任意常数,e为自然对数的底数。要得到特定的解,需要根据具体的初始条件或边界条件确定C的值。 总结起来,求解一阶线性齐次常系数的微分方程的方法是:将方程转化为可以分离变量的形式,对方程进行积分,引入任意常数C,然后去掉绝对值,得到一般解。最后根据具体条件确定常数C的值,得到特定的解。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值