java快速排序及时间复杂度

快速排序是通过递归,来排序的,先定义一个递归方法quicksort(int[] arr, int left, int right)

再定义两个游标,分别是i、j,再定义一个基准数base=arr[left](基准数就是传过来的这段数组的第一个数),游标 j 先开始移动,先找到比基准数小的,游标 i 再开始移动,找到比基准数大的,这两个数交换。直到 i和j 相遇(相遇时这个数比基准数大,因为j 先移动的,也必须j先移动)让基准数和游标指向的数交换,交换完后会发现游标前的数比游标后的数都小,在通过递归循环,

下一个递归就是quicksort(arr, left, i-1)和quicksort(arr, i+1, right),让它分别给游标前和游标后的数进行交换和递归,递归出口是如果left大于right就结束(如果递归只剩下一个数,left是=i的,所以i-1也就是right就小于left了)

看下图流程:

 

 代码如下:

public class Quicksort {
	public static void main(String[] args) {
		int[] arr= {23,43,1,22,67,123,88,99,90,15};
        //递归
		quicksort(arr,0,arr.length-1);
		System.out.println(Arrays.toString(arr));
	}

	public static void quicksort(int[] arr, int left, int right) {
        //递归出口
		if(left>right) {
			return;
		}
        //基准数
		int base=arr[left];
        //定义游标i、j
		int i=left;
		int j=right;
        //i和j没有相遇时交换两个数
		while(i!=j) {
			while(arr[j]>=base&&i<j) {
				j--;
			}
			while(arr[i]<=base&&i<j) {
				i++;
			}
            //交换
			int temp=arr[j];
			arr[j]=arr[i];
			arr[i]=temp;
		}
        //i和j相遇交换基准数和游标指向的数
		arr[left]=arr[i];
		arr[i]=base;
        //继续进行递归
		quicksort(arr, left, i-1);
		quicksort(arr, i+1, right);
		
	}
}

 结果如下图:

时间复杂度:递归的时间复杂度是O(logn),交换是o(1),但游标移动的时间复杂度是o(n),所以总体来说时间复杂度是O(nlogn)

快速排序和归并排序都是常见的排序算法,它们的时间复杂度如下: 1. 快速排序(Quick Sort)的平均时间复杂度为O(nlogn),最坏情况下的时间复杂度为O(n^2)。 - 在平均情况下,快速排序时间复杂度为O(nlogn)。这是因为快速排序使用分治策略,每次选择一个基准元素,并将数组分成两个子数组,然后递归地对子数组进行排序。在平均情况下,每次划分将数组分成大小接近一半的两个子数组,因此总的比较和交换次数为O(nlogn)。 - 在最坏情况下,如果每次划分都选择了当前最大或最小的元素作为基准,那么快速排序时间复杂度将退化到O(n^2)。这种情况下,每次划分只能将数组分成一个子数组和一个空数组,递归调用的次数为n,因此总的比较和交换次数为1 + 2 + ... + n-1 = n * (n-1) / 2,即O(n^2)。 2. 归并排序(Merge Sort)的时间复杂度始终稳定在O(nlogn)。 - 归并排序使用分治策略,将待排序的数组分成两个子数组,分别进行排序,然后将两个有序子数组合并成一个有序数组。在归并的过程中,需要将元素逐个比较并放入临时数组中。在每一层的归并过程中,需要进行n次比较和交换操作。总共需要进行logn层的归并,因此总的比较和交换次数为n * logn,即O(nlogn)。 需要注意的是,以上时间复杂度是对算法的整体评估。实际应用中,算法的具体实现和优化策略也会对时间复杂度产生影响。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Sshm_666

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值