yolov5实现小数据集的目标检测--kolektor缺陷数据集

要求:

      Python>=3.7.0 

      PyTorch>=1.7

我直接在colab上运行,直接不用管这些。

数据集:

可以使用自己做的数据集,我用的是kolektor数据集,下载地址https://www.vicos.si/Downloads/KolektorSDD

KSDD里面只有50个缺陷数据,我做了旋转,差不多一百个缺陷数据

(自己想做其他数据的检测原理也是一样的)

标注数据集就用labelImg标注,效果如下:

 一、在colab上直接克隆源码,再下载requirements.txt文件

% cd /content/yolov5
!git clone https://github.com/ultralytics/yolov5
!pip install -r requirements.txt 

 二、将数据集与yolov5文件放置同级(根据官网)

 分别将图片和txt文件放到images和labels文件夹内。

然后根据自己数据集的类别,在路径yolov5/data/下写一个含有后缀.yaml的配置文件,我的只需要检测一类缺陷,nc为1,names为类名。

下面是我定义的,test.yaml:

三、进行训练(可以选择不同的版本:yolov5n/s/m/l/x

 

! python train.py --img 640 --batch 30 --epochs 100 --data test.yaml --weights yolov5s.pt

可以自己定义batch、epochs

注意:在我第一次训练的时候,用的官网的batch 16 、epochs 3,导致我val_batch_pred.jpg的图片并没有预测信息,当我调大之后就有了。

训练之后的结果:

 然后运行detect.py ,选择自己的图片验证:

!python detect.py --weights runs/train/exp4/weights/last.pt --source data/images/Part0.jpg --device 0 --save-txt

有缺陷的:

无缺陷的:

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值