关注公众号回复1:获取《2021 联邦学习全球研究与应用趋势报告》全文下载链接
7 月 31 日,美国亚马逊公司(Amazon)被卢森堡数据保护委员会处以 7.46 亿欧元(约合 57.2 亿元人民币)的罚款,原因是 Amazon 违反了欧盟的《通用数据保护条例》。
事实上,Amazon 并非是首次遭遇数据隐私巨额罚款的公司,此前 Facebook 和 Google 也因违反相关数据隐私保护规定而被处以巨额罚款。
如今,随着人们越来越重视个人隐私权、政策法规愈发严格、数据协作和隐私保护矛盾日益凸出,隐私计算已然成为全球新兴的一大产业。
而联邦学习(Federated Learning)作为一种隐私保护的重要解决方案之一,近年来也得到了飞速的发展和足够多的关注。
在今年 7 月发布的 2021 年度 Gartner 技术成熟度曲线中,联邦学习被首次纳入 " 隐私计算的技术成熟度曲线 — 2021",根据此次 Gartner 预测内容,在 2021-2025 年这一周期中,联邦学习将发挥主流作用,引导该领域的商业化大潮。
近日,清华大学人工智能研究院知识智能中心和清华—中国工程院知识智能联合研究中心和智谱 AI 联合发布了《2021 联邦学习全球研究与应用趋势报告》,报告从科研论文、专利、书籍、行业应用、学者地图与画像、技术发展趋势等多个角度,全景展示和分析了联邦学习技术重要进展,并展望了该技术的未来发展方向与前景。
我国学者王爽教授于2012年首先提出了联邦学习框架应用于医疗在线学习,并于2013年发表在了专业SCI期刊上,论文题目是EXpectation Propagation LOgistic REgRession (EXPLORER): Distributed privacy-preserving online model learning[2]。该论文提出了在不需要分享原始个体数据的情况下,利用多个数据源进行带有隐私保护的联合建模。