/**
* 分析:将问题变为寻找第k(total/2)个数,前提是给定的两个数组都是有序(升序)的。
* 假设数组A和数组B都大于k/2时,取A[k/2 - 1]与B[k/2 - 1]进行比较,比较结果有三种情况,
* 第一种A[k/2 - 1] = B[k/2 - 1],那么就找到了结果为其中任意一个
* 第二种A[k/2 - 1] < B[k/2 - 1],证明中位数肯定不在A数组的前k/2个数中,可以排除掉,此时采用递归的方法,新数组 * 为A剩余的数,B数组,k值为(k - k/2);
* 第三种为A[k/2 - 1] > B[k/2 - 1],与第二种结果相反。
*/
public double findMedianSortedArrays(int[] nums1, int[] nums2) {
int total = nums1.length + nums2.length;
if(total % 2 != 0){
return findKth(nums1,nums2,total/2 + 1);
}else{
return (findKth(nums1,nums2,total/2) + findKth(nums1,nums2,total/2 + 1))/2;
}
}
/**
*寻找第k个数
*/
public double findKth(int[] a,int[] b,int k){
if(a.length > b.length){
return findKth(b,a,k);
}
if(a.length == 0){
return b[k-1];
}
if(k == 1){
return Math.min(a[0],b[0]);
}
int pa = Math.min(k/2,a.length);
int pb = k - pa;
if(a[pa - 1] < b[pb - 1]){
return findKth(Arrays.copyOfRange(a,pa,a.length),b,pb);
}else if(a[pa - 1] > b[pb - 1]){
return findKth(a,Arrays.copyOfRange(b,pb,b.length),pa);
}else{
return a[pa-1];
}
}