Median of Two Sorted Arrays

 /**
     * 分析:将问题变为寻找第k(total/2)个数,前提是给定的两个数组都是有序(升序)的。
     * 假设数组A和数组B都大于k/2时,取A[k/2 - 1]与B[k/2 - 1]进行比较,比较结果有三种情况,
     * 第一种A[k/2 - 1] = B[k/2 - 1],那么就找到了结果为其中任意一个
     * 第二种A[k/2 - 1] < B[k/2 - 1],证明中位数肯定不在A数组的前k/2个数中,可以排除掉,此时采用递归的方法,新数组      * 为A剩余的数,B数组,k值为(k - k/2);
     * 第三种为A[k/2 - 1] > B[k/2 - 1],与第二种结果相反。
     */ 
    public double findMedianSortedArrays(int[] nums1, int[] nums2) {
        int total = nums1.length + nums2.length;
        if(total % 2 != 0){
            //总个数为奇数
            return findKth(nums1,nums2,total/2 + 1);
        }else{
            //总个数为偶数
            return (findKth(nums1,nums2,total/2) + findKth(nums1,nums2,total/2 + 1))/2;
        }
    }

    /**
     *寻找第k个数 
     */
    public double findKth(int[] a,int[] b,int k){
        //始终保证a.length < b.length
        if(a.length > b.length){
            return findKth(b,a,k);
        }

        if(a.length == 0){
            return b[k-1];
        }

        if(k == 1){
            return Math.min(a[0],b[0]);
        }

        int pa = Math.min(k/2,a.length);
        int pb = k - pa;

        if(a[pa - 1] < b[pb - 1]){
            return findKth(Arrays.copyOfRange(a,pa,a.length),b,pb);
        }else if(a[pa - 1] > b[pb - 1]){
            return findKth(a,Arrays.copyOfRange(b,pb,b.length),pa);
        }else{
            return a[pa-1];
        }
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值