磨人的小妖精----原型链

引言

其实很早我就接触了原型链,可是一直是似懂非懂,实习或者是做项目经常性写一些业务代码也没有用上,但是原型链这个东西是JavaScript的精髓,我一定要弄懂,嘤嘤嘤

话不多说开始吧

首先需要看一张相当经典的图!
在这里插入图片描述
这张图看起来有点乱,但其实条例时十分清晰的。
还有一张关于我们JavaScript内置对象的:
在这里插入图片描述

对象、函数以及原型之间的关系

对象:在JavaScript中,人和事是存在的东西都是对象(包括函数也是一个对象),我们平时new出来的对象,看似是由函数实例出来的,但是其实是个假象。
第一个概念:JavaScript中的所有对象并不是说是构造函数实例化(new)而来的,JavaScript中存在构造函数的概念,但是实例化是不存在的。其实JavaScript对象是产生于构造函数的原型属性中
但是对象并不等于构造函数的原型属性,他们并不是相等的。

var A=function(){
}
var a=new A();
console.log(a===A.prototype)//输出false

oh~那么那么它们是个什么关系呢?据资料讲,这个关系造作克隆,每个对象都会有一个,JavaScript中给我们保留了一个属性去维持这个关系,
那就死__proto__。

var A=function(){
}
var a=new A();
console.log(a.__proto__===A.prototype)//输出true

这也就是为什么,我们在构造函数的原型属性上写的方法和属性能够被当前创建的对象访问的原因,这个__proto__起了十分大的作用。

原型链

console.log(typeof A.prototype);//输出object

继续之前的例子,我们输出A的原型属性,发现是个object,对象!!那么跟之前有类似了,他的构造函数是谁?

console.log(A.__proto__===Function.prototype);//输出true
console.log(A.__proto__.__proto__===Object.prototype);//输出true

就这样一条原型链就能够顺清楚了。

console.log(Object.prototype.__proto__);//null

原型链的最顶端是null!
其实执行typeof null也会是对象,其实它不仅仅是对象,他还是整个JavaScript体系的最上一级,所有的JavaScript对象都是由它一级一级克隆下来的!
补充一张图片(见过最简单易懂的图了,但是注意,在原型链上查找的时候是不会查找自身的原型链的!):
在这里插入图片描述

拓展

我们将对象的创建再细化一下!
在这里插入图片描述
直接上例子看看:

/*1、字面量方式*/
var a = {};
console.log(a.__proto__);  //Object {}

console.log(a.__proto__ === a.constructor.prototype); //true

/*2、构造器方式*/
var A = function(){};
var a = new A();
console.log(a.__proto__); //A {}

console.log(a.__proto__ === a.constructor.prototype); //true

/*3、Object.create()方式*/
var a1 = {a:1}
var a2 = Object.create(a1);
console.log(a2.__proto__); //Object {a: 1}

console.log(a2.__proto__ === a2.constructor.prototype); //false(此处即为图1中的例外情况)

结语

啊哈哈哈哈哈哈哈哈哈哈终于把你顺清楚了,你个原型链哈哈哈哈哈哈哈哈哈哈哈哈哈。
小建议就是,一定要自己动手!!印象更加深刻!!!!

参考资料

js原型链如何简单理解
三张图搞懂JavaScript的原型对象与原型链

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
基于信息熵进行划分选择的决策树算法是一种用于分类和回归分析的机器学习算法。该算法通过计算样本集中各个属性的熵,选择熵最小的属性作为节点进行划分,进而构建决策树。 Python编程语言提供了丰富的库和工具,可以方便地实现基于信息熵的决策树算法。下面是一个示例代码: ```python import pandas as pd import numpy as np def calculate_entropy(labels): unique_labels = np.unique(labels) entropy = 0 total_samples = len(labels) for label in unique_labels: p_label = len(labels[labels == label]) / total_samples entropy += -p_label * np.log2(p_label) return entropy def calculate_information_gain(data, labels, attribute): unique_values = np.unique(data[attribute]) total_samples = len(labels) info_gain = calculate_entropy(labels) for value in unique_values: subset_labels = labels[data[attribute] == value] p_value = len(subset_labels) / total_samples info_gain -= p_value * calculate_entropy(subset_labels) return info_gain def choose_best_attribute(data, labels): attributes = data.columns best_attribute = '' max_info_gain = -np.inf for attribute in attributes: info_gain = calculate_information_gain(data, labels, attribute) if info_gain > max_info_gain: max_info_gain = info_gain best_attribute = attribute return best_attribute def create_decision_tree(data, labels): # 基准情况:如果所有实例都属于同一类别,则返回该类别 if len(np.unique(labels)) == 1: return labels[0] # 基准情况:如果没有属性可用于划分,则返回实例数量最多的类别 if len(data.columns) == 0: unique_labels, counts = np.unique(labels, return_counts=True) return unique_labels[np.argmax(counts)] best_attribute = choose_best_attribute(data, labels) tree = {best_attribute: {}} unique_values = np.unique(data[best_attribute]) for value in unique_values: subset_data = data[data[best_attribute] == value].drop(columns=best_attribute) subset_labels = labels[data[best_attribute] == value] if len(subset_labels) == 0: unique_labels, counts = np.unique(labels, return_counts=True) tree[best_attribute][value] = unique_labels[np.argmax(counts)] else: tree[best_attribute][value] = create_decision_tree(subset_data, subset_labels) return tree # 示例使用 data = pd.DataFrame({ 'Outlook': ['Sunny', 'Sunny', 'Overcast', 'Rain', 'Rain', 'Rain', 'Overcast', 'Sunny', 'Sunny', 'Rain', 'Sunny', 'Overcast', 'Overcast', 'Rain'], 'Temperature': ['Hot', 'Hot', 'Hot', 'Mild', 'Cool', 'Cool', 'Cool', 'Mild', 'Cool', 'Mild', 'Mild', 'Mild', 'Hot', 'Mild'], 'Humidity': ['High', 'High', 'High', 'High', 'Normal', 'Normal', 'Normal', 'High', 'Normal', 'Normal', 'Normal', 'High', 'Normal', 'High'], 'Wind': ['Weak', 'Strong', 'Weak', 'Weak', 'Weak', 'Strong', 'Strong', 'Weak', 'Weak', 'Weak', 'Strong', 'Strong', 'Weak', 'Strong'], 'Play': ['No', 'No', 'Yes', 'Yes', 'Yes', 'No', 'Yes', 'No', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'No'] }) labels = data['Play'] data = data.drop(columns='Play') decision_tree = create_decision_tree(data, labels) print(decision_tree) ``` 以上代码中,我们首先定义了几个辅助函数。`calculate_entropy`函数用于计算标签的熵,`calculate_information_gain`函数用于计算每个属性的信息增益,`choose_best_attribute`函数用于选择信息增益最高的属性作为划分节点。然后,我们定义了`create_decision_tree`函数来递归构建决策树。 在示例中,我们使用了一个天气预测的数据集来构建决策树。最终打印出的决策树是一个字典,其中键表示划分的属性,值表示该属性的不同取值所对应的子树。 总结来说,Python编程语言提供了丰富的库和工具,可以很方便地实现基于信息熵的决策树算法。通过计算属性的熵和信息增益,我们可以选择最优的属性进行划分,从而构建出一个高效且准确的决策树模型。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值