Project Euler 1-10练习题希望自己坚持下去

附上在线IDE http://www.shucunwang.com/RunCode/cpp/


求1000以内所有3或5的倍数的和

#include <iostream>
using namespace std;

int main() {
    
    int sum = 0;
    for(int i=0; i<1000; ++i)
    {
        if(i%3==0 || i%5==0)
        {
            sum += i;
        }
    }
    cout << "sum:" << sum << endl;
	return 0;
}


斐波那契数列中不超过四百万的项,求其中为偶数的项之和

#include <iostream>
using namespace std;


int fibonacci(int first, int second, int& total_sum)
{
    if(first <= 4000000)
    {
        int tmp_sum = first + second;
        total_sum += first%2==0?first:0;
        return fibonacci(second, tmp_sum, total_sum);
    }
    return first;
}


int main() {
    
    int sum = 0;
    fibonacci(1,2,sum);
    cout << "even-sum:" << sum << endl;
	return 0;
}


3   600851475143最大的质因数是多少

#include <iostream>
using namespace std;


int largest_prime_factor(long n)
{
  int min = 2;
  while (n > min) {
    for (int i = min; i <= n; i++) {
      if (n % i == 0) {
        n = n / i;
        min = i;
        break;
      }
    }
  }
  return min;
}


int main() {
  int max_prime_factor = largest_prime_factor(600851475143);
  cout  << "max:" << max_prime_factor << endl;
  return 0;
}


4 由两个3位数相乘得到的最大回文乘积

#include <sstream>
#include <iostream>
using namespace std;

bool is_palindromic(int num)
{
    std::ostringstream out;
    out << num;
    string num_str = out.str();
    int max_size = num_str.size();
    for(int i=0; i<max_size/2; ++i)
    {
        if(num_str[i] != num_str[max_size-1-i])
        {
            return false;
        }
    }
    return true;
}

int get_max_palindromic()
{
    int max = 1;
    for(int i=999; i>=1; --i)
    {
        for(int j=999; j>=1; --j)
        {
            int mul_nm = i*j;
            bool is_palindromic_num = is_palindromic(mul_nm);
            if(is_palindromic_num)
            {
                max = mul_nm > max ? mul_nm : max;
            }
        }
    }
    return max;
}


int main()
{
    int max_palindromic = get_max_palindromic();
    cout << "result:" << max_palindromic << endl;
    return 0;
}

5. 最小的能够被1到20整除的正数--最小倍数

#include <iostream>
#include <map>
#include <cmath>
using namespace std;

void get_num_prime(int num, map<int,int>& out_all_prime)
{//获取一个数的所有质数
    map<int,int> num_prime;
    while(num >= 2)
    {
        for(int i=2; i<=num; ++i)
        {
            if(num%i==0)
            {//找到一个质数,存储
                if(num_prime.find(i) == num_prime.end())
                {
                    num_prime[i] = 1;
                }
                else
                {
                    num_prime[i]++;
                }
                num = num/i;
            }
        }
    }
    //合并获得的质数
    map<int,int>::iterator num_it=num_prime.begin();
    for(; num_it!=num_prime.end(); ++num_it)
    {
        int cur_prime = num_it->first;  //质数
        int cur_prime_count = num_it->second;   //质数的个数
        if(out_all_prime.find(cur_prime) == out_all_prime.end())
        {
            out_all_prime[cur_prime] = cur_prime_count;
        }
        else
        {
            int num_prime_count = out_all_prime[cur_prime];
            out_all_prime[cur_prime] = max(cur_prime_count, num_prime_count);
        }
    }
}
int main() {
    map<int, int> all_prime;
    for(int i=1; i<=20; ++i)
    {
        get_num_prime(i, all_prime);
    }
    int num = 1;
    map<int, int>::iterator it = all_prime.begin();
    for(; it != all_prime.end(); ++it)
    {
        num *= pow(it->first, it->second);
    }
	cout  << "smallest positive number: " << num << endl;;
	return 0;
}


6.平方的和与和的平方之差

#include <iostream>
#include <cmath>
#include <cstdlib>
using namespace std;

int main()
{
	int square_sum = 0;
    int sum_square = 0;
    for(int i=1; i<=100; ++i)
    {
        square_sum += pow(i*1.0,2);
        sum_square += i;
    }
    sum_square = pow(sum_square*1.0,2);
    int diff_val = abs(square_sum - sum_square);
    cout << "diff value: " << diff_val << endl;
	return 0;
}


7 第10001个质数

#include <iostream>
#include <cmath>
using namespace std;

int get_prime(int n)
{
	int *p_r = new int[n];
	int count = 1;
	p_r[0] = 2;
	p_r[1] = 3;

	for(int i=3; count!=n; i+=2)
	{
		int sqrt_i = floor(sqrt(i*1.0));
        int j = 1;
		for(j=1; sqrt_i>=p_r[j] && i%p_r[j]!=0; ++j);

		if(sqrt_i<p_r[j])
		{
			p_r[count++] = i;
		}
	}
	return p_r[count-1];
}

int main()
{
	cout << "prime:" << get_prime(10001) << endl;
	return 0;
}

8.连续数字最大乘积

#include <iostream>
#include <cstdlib>
#include <string>
using namespace std;

//找出连续n位最大的字符串
long get_max_num(const string& src, int n)
{
    if (src.empty())
    {
       return 0;
    }
    string max_str = src.substr(0, n);
    for (int idx=1; idx<src.size()-n; ++idx)
    {
        long mul_ret1 = 1;
        long mul_ret2 = 1;
        //计算n位数的乘积
        string com_str = src.substr(idx, n);
        for (int i=0; i<n; ++i)
        {
            if (!max_str.substr(i,1).empty())
            {
                mul_ret1 *= atoi(max_str.substr(i,1).c_str());
            }
            if (!com_str.substr(i,1).empty())
            {
                mul_ret2 *= atoi(com_str.substr(i,1).c_str());
            }
        }
        cout << "max_str:" << max_str << "  com_str:" << com_str << endl;
        if (mul_ret1 < mul_ret2)
        {//赋值比较后的最大值
            max_str = com_str;
        }

    }
    cout << "max_str:" << max_str << endl;
    return atol(max_str.c_str());
}

int main()
{
    string num_str = "73167176531330624919225119674426574742355349194934"
        "96983520312774506326239578318016984801869478851843"
        "85861560789112949495459501737958331952853208805511"
        "12540698747158523863050715693290963295227443043557"
        "66896648950445244523161731856403098711121722383113"
        "62229893423380308135336276614282806444486645238749"
        "30358907296290491560440772390713810515859307960866"
        "70172427121883998797908792274921901699720888093776"
        "65727333001053367881220235421809751254540594752243"
        "52584907711670556013604839586446706324415722155397"
        "53697817977846174064955149290862569321978468622482"
        "83972241375657056057490261407972968652414535100474"
        "82166370484403199890008895243450658541227588666881"
        "16427171479924442928230863465674813919123162824586"
        "17866458359124566529476545682848912883142607690042"
        "24219022671055626321111109370544217506941658960408"
        "07198403850962455444362981230987879927244284909188"
        "84580156166097919133875499200524063689912560717606"
        "05886116467109405077541002256983155200055935729725"
        "71636269561882670428252483600823257530420752963450";
    static int MAX_STR_LENGTH = 13;
    long max_num = get_max_num(num_str, MAX_STR_LENGTH);
    long mul_ret = 1;
    for (int i=0; i<MAX_STR_LENGTH; ++i)
    {
        int cur_int = max_num%10;
        mul_ret *= cur_int;
        max_num /= 10;
    }

    cout << "mul_ret|" << mul_ret << "|" << endl;
	return 0;
}

9.特殊毕达哥拉斯三元组

#include <iostream>
#include <cmath>
using namespace std;

int main() {
    int num1,num2,num3;
    for(int i=1; i<1000; ++i)
    {
        for(int j=1;j<1000; ++j)
        {
            int tmp = i*i + j*j;
            int k = sqrt(1.0*tmp);
            if(i+j+k == 1000 && tmp==k*k && i<j && j<k)
            {
                num1 = i;
                num2 = j;
                num3 = k;
                break;
            }
        }
    }
    int mul_val = num1*num2*num3;
    cout << "mul_val:" << mul_val << endl;
    return 0;
}

10.素数的和

#include <iostream>
#include <cmath>
using namespace std;

bool is_prime(int num)
{
    if (num < 2)
    {
        return false;
    }
    int tmp = sqrt(1.0*num);
    for (int i=2; i<=tmp; ++i)
    {
        if (num%i == 0)
        {
            return false;
        }
    }
    return true;
}

int main() {

    long long sum = 0;
    for (int i=2; i<=2000000; ++i)
    {
        if (is_prime(i))
        {
            sum += i;
        }
    }
    cout << "sum:" << sum << endl;
    return 0;
}


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值