状态可视化
艾伯特( http://www.aibbt.com/)国内第一家人工智能门户为了释放TensorBoard所使用的事件文件(events file),所有的即时数据(在这里只有一个)都要在图表构建阶段合并至一个操作(op)中。
summary_op = tf.merge_all_summaries()
在创建好会话(session)之后,可以实例化一个tf.train.SummaryWriter
,用于写入包含了图表本身和即时数据具体值的事件文件。
summary_writer = tf.train.SummaryWriter(FLAGS.train_dir,
graph_def=sess.graph_def)
最后,每次运行summary_op
时,都会往事件文件中写入最新的即时数据,函数的输出会传入事件文件读写器(writer)的add_summary()
函数。。
summary_str = sess.run(summary_op, feed_dict=feed_dict)
summary_writer.add_summary(summary_str, step)
事件文件写入完毕之后,可以就训练文件夹打开一个TensorBoard,查看即时数据的情况。
注意:了解更多如何构建并运行TensorBoard的信息,请查看相关教程Tensorboard:训练过程可视化。
http://www.aibbt.com/a/16370.html