浅谈 Dropout防止过拟合

过拟合主要由数据噪声、训练数据不足和模型复杂度过高引起。Dropout作为一种训练技巧,通过在训练期间随机关闭部分神经元来减少依赖,从而降低过拟合风险。每次迭代过程中,不同神经元被临时删除,使得网络在多次迭代中学习到多个简化版本的模型,提升整体泛化能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

发生过拟合的主要原因可以有以下三点:

(1)数据有噪声

(2)训练数据不足,有限的训练数据

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值