题目描述
给你一棵二叉树的根节点,返回该树的 直径 。
二叉树的 直径 是指树中任意两个节点之间最长路径的 长度 。这条路径可能经过也可能不经过根节点
root
。两节点之间路径的 长度 由它们之间边数表示。
示例 1:
输入:root = [1,2,3,4,5] 输出:3 解释:3 ,取路径 [4,2,1,3] 或 [5,2,1,3] 的长度。示例 2:输入:root = [1,2] 输出:1
提示:
- 树中节点数目在范围
[1, 104]
内-100 <= Node.val <= 100
解题思路
要找到二叉树的直径,我们需要找到树中任意两个节点之间的最长路径。这个路径的长度由路径中的边数决定,而不是节点数,可以使用深度优先搜索(DFS)的方法:
-
定义直径:直径是树中两个节点之间最长的路径长度。这个路径可能会经过树的根节点,也可能不会。
-
DFS 计算深度:
使用 DFS 递归遍历树中的每个节点,同时计算每个节点的左右子树的深度;对于每个节点,计算通过该节点的最长路径长度,即左右子树深度之和;更新全局变量maxDiameter
以记录当前最大直径。 -
计算节点的深度:通过递归计算每个节点的左右子树的深度,返回节点的最大深度。
复杂度分析
时间复杂度
- 计算每个节点的深度:对于树中的每个节点,我们都需要递归地计算其左右子树的深度。每个节点的处理(即计算其左右子树深度和更新最大直径)只需要常数时间。
- 总时间复杂度:由于每个节点在 DFS 遍历过程中被访问一次,所以时间复杂度是 O(N),其中 NNN 是树中节点的总数。
空间复杂度
- 递归栈的空间:由于使用了递归 DFS 方法,递归栈的最大深度等于树的高度。对于最坏情况(例如链式树结构),树的高度可能达到 NNN(节点数),此时递归栈的空间复杂度为 O(N)。对于平衡树,递归栈的深度是树的高度,即 O(log N)。
- 额外空间:除了递归栈外,额外使用的空间主要是
maxDiameter
变量,空间复杂度为 O(1)。
因此,整体的空间复杂度主要由递归栈的深度决定,对于最坏情况下是 O(N),而对于平衡树是 O(log N)。
代码实现
package org.zyf.javabasic.letcode.hot100.tree;
import org.zyf.javabasic.letcode.tree.base.TreeNode;
/**
* @program: zyfboot-javabasic
* @description: 二叉树的直径(简单)
* @author: zhangyanfeng
* @create: 2024-08-22 11:23
**/
public class DiameterOfBinaryTreeSolution {
private int maxDiameter = 0; // 记录最大直径
public int diameterOfBinaryTree(TreeNode root) {
calculateDepth(root);
return maxDiameter;
}
// 计算树的深度并更新最大直径
private int calculateDepth(TreeNode node) {
if (node == null) {
return 0;
}
// 递归计算左右子树的深度
int leftDepth = calculateDepth(node.left);
int rightDepth = calculateDepth(node.right);
// 更新最大直径
maxDiameter = Math.max(maxDiameter, leftDepth + rightDepth);
// 返回当前节点的深度
return Math.max(leftDepth, rightDepth) + 1;
}
public static void main(String[] args) {
DiameterOfBinaryTreeSolution solution = new DiameterOfBinaryTreeSolution();
// 示例 1
TreeNode root1 = new TreeNode(1);
root1.left = new TreeNode(2);
root1.right = new TreeNode(3);
root1.left.left = new TreeNode(4);
root1.left.right = new TreeNode(5);
System.out.println("Example 1: " + solution.diameterOfBinaryTree(root1)); // 输出: 3
// 示例 2
TreeNode root2 = new TreeNode(1);
root2.left = new TreeNode(2);
System.out.println("Example 2: " + solution.diameterOfBinaryTree(root2)); // 输出: 1
}
}