深入理解mahout基于hadoop的协同过滤流程

mahout版本为mahout-distribution-0.9

mahout基于hadoop协同过滤(itembased)触发类为org.apache.mahout.cf.taste.hadoop.item.RecommenderJob。

执行RecommenderJob时大概需要以下参数:

--input <input> 
--output <output> 
--numRecommendations   Number of recommendations per user
--usersFile   File of users to recommend for
--itemsFileFile of items to recommend for
 --filterFileFile containing comma-separated userID,itemID pairs. Used to exclude the item from the recommendations for that user (optional)  
--booleanData Treat input as without pref values 
--similarityClassname (-s) similarityClassname     [SIMILARITY_COOCCURRENCE,SIMILARITY_LOGLIKELIHOOD,
     SIMILARITY_TANIMOTO_COEFFICIENT,SIMILARITY_CITY_BLOCK,
     SIMILARITY_COSINE,SIMILARITY_PEARSON_CORRELATION,
     SIMILARITY_EUCLIDEAN_DISTANCE]
--maxPrefsPerUserMaximum number of preferences considered per user in final recommendation phase           
--minPrefsPerUser ignore users with less preferences than this in the similarity computation
 --maxSimilaritiesPerItem  Maximum number of similarities considered per item 
--maxPrefsInItemSimilaritymax number of preferences to consider per user or item in the item similarity computation phase, users or items withmore preferences will be sampled down
 --threshold <threshold>            discard item pairs with a similarity value below this 
--outputPathForSimilarityMatrix  write the item similarity matrix to this path (optional)
--randomSeed    use this seed for sampling 
--sequencefileOutput  write the output into a SequenceFile instead of a text file
--help 
--tempDir  Intermediate output directory
--startPhase  First phase to run default 0
--endPhaseLast phase to run  

                                       

mahout协同过滤输入格式为(userid,itemid,preference)。RecommenderJob流程主要包括以下几部分,我们会依次进行分析。

1、PreparePreferenceMatrixJob作业

所在包为org.apache.mahout.cf.taste.hadoop.preparation.PreparePreferenceMatrixJob,打开此类可以看到,此作业包含3个子作业。

1.1 itemIDIndex

此作业会执行ItemIDIndexMapper.class作为map类,执行ItemIDIndexReducer.class作为reduce类。

ItemIDIndexMapper.class作用是将long型的itemid转为int型内部索引。输入格式为(userid,itemid,preference),输出格式为(index,itemid)。

结果会保存到tempDir/preparePreferenceMatrix/itemIDIndex中。

1.2 toUserVectors

此作业执行ToItemPrefsMapper.class作为map类,ToUserVectorsReducer.class作为reduce类。

toUserVectors作用是将用户偏好写成每个用户的偏好向量。输入格式为(userid,temid,preference>),输出格式为 (userId, VectorWritable<itemId, preference>)

结果会保存到tempDir/preparePreferenceMatrix/userVectors文件中。

1.3 toItemVectors

此作业执行ToItemVectorsMapper.class作为map类,ToItemVectorsReducer.class作为reduce类。

toItemVectors作用是建立项目的评分矩阵。输入为toUserVectors作业的执行结果userVectors格式为(userId, VectorWritable<itemId,preference>),输出为(itemId,VectorWritable<userId,preference>)。

结果会保存到tempDir/preparePreferenceMatrix/ratingMatrix文件中。

2、 RowSimilarityJob作业

所在包为package org.apache.mahout.math.hadoop.similarity.cooccurrence.RowSimilarityJob,打开此类进行分析。

2.1 countObservations

此作业执行CountObservationsMapper.class作为map类,执行SumObservationsReducer.class作为reduce类。

countObservations作用是计算出每个用户的评定物品数。输入为1.3中的结果ratingMatrix格式为(itemId,VectorWritable<userId,preference>),输出格式为(vector<userid,count>)。

计算结果保存在tempDir/observationsPerColumn.bin文件中(此文件读取需要使用org.apache.mahout.math.hadoop.similarity.cooccurrence.Vectors中的read函数)。

2.2 normsAndTranspose

此作业map函数为VectorNormMapper.class,reduce函数为MergeVectorsReducer.class。

normsAndTranspose作用是将首先将ratingMatrix(itemId,VectorWritable<userId,preference>)数据进行normalize化,之后数据写成(userId, VectorWritable<itemId,preference>)格式。在此步骤的map阶段计算了每个项目preference的norms值,并将数值存到tempDir/norms.bin文件中,norms计算方式依相似度函数而定,具体实现见相似度函数中的norm函数。此处以EuclideanDistanceSimilarity为例,计算方式如下:

 @Override
  public double norm(Vector vector) {
    double norm = 0;
    for (Vector.Element e : vector.nonZeroes()) {
      double value = e.get();
      norm += value * value;
    }
    return norm;
  }

normalize的计算方式与所选的相似度就算方式有关,此处以SIMILARITY_EUCLIDEAN_DISTANCE为例,计算方式如下:

@Override
  public Vector normalize(Vector vector) {
    return vector;
  }
normalize SIMILARITY_EUCLIDEAN_DISTANCE为例,计算方式如下:

@Override
  public Vector normalize(Vector vector) {
    if (vector.getNumNondefaultElements() == 0) {
      return vector;
    }

    // center non-zero elements
    double average = vector.norm(1) / vector.getNumNonZeroElements();
    for (Vector.Element e : vector.nonZeroes()) {
      e.set(e.get() - average);
    }
    return super.normalize(vector);
  }

计算结果保存在tempDir/weights文件中。

2.3 pairwiseSimilarity

此作业以 CooccurrencesMapper.class作为map类,以SimilarityReducer.class作为reduce类。

pairwiseSimilarity作用为计算item之间的相似度。数据输入为weights文件格式为(userId, VectorWritable<itemId,preference>),输出为(itemM,VectorWritable <itemM+,similarscore>)(每条项目为key的数据中其它项目index一定比当前项目大,比如M对应M+1,M+2,....),由此可以看出此作业输出为对角阵的上半部分。

此作业计算相似度的方式为:在map阶段完成aggregate计算,计算方式依相似度函数而定,此处以SIMILARITY_EUCLIDEAN_DISTANCE为例,计算方式如下,

 @Override
  public double aggregate(double valueA, double nonZeroValueB) {
    return valueA * nonZeroValueB;
  }

再reduce阶段通过使用map阶段计算出的aggregate值和2.2作业的norms值,得到item之间的相似度,相似度的计算方式依相似度函数而定,此处以EuclideanDistanceSimilarity为例,计算方式如下:

@Override
  public double similarity(double dots, double normA, double normB, int numberOfColumns) {
    // Arg can't be negative in theory, but can in practice due to rounding, so cap it.
    // Also note that normA / normB are actually the squares of the norms.
    double euclideanDistance = Math.sqrt(Math.max(0.0, normA - 2 * dots + normB));
    return 1.0 / (1.0 + euclideanDistance);
  }

此作业的计算结果保存在 tempDir/pairwiseSimilarity中。

2.4 asMatrix

此作业的map类为UnsymmetrifyMapper.class,reduce类为MergeToTopKSimilaritiesReducer.class。

asMatrix的作用是将2.3的矩阵矩阵整理为完整的相似度矩阵。输入为2.3的pairwiseSimilarity文件,格式为(itemM,VectorWritable <itemM+,similarscore>),输出为(itemM,VectorWritable ((item1,similarscore),(item2,similarscore),....)。

asMatrix作业的工作方式为:在map阶段,计算pairwiseSimilarity中每个item的maxSimilaritiesPerRow(默认为100)个最相似的item,使用TopElementsQueue函数。在reduce阶段,首先将斜半矩阵合并成全矩阵,然后使用Vectors.topKElements()函数,取出最相似的maxSimilaritiesPerRow个item。此处可以看出map阶段相当于reduce的预处理阶段,将对角矩阵进行预处理,减少了reduce的计算量。

asMatrix计算结果保存在tempDir/similarityMatrix文件中。

2.5 outputSimilarityMatrix

如果设置了outputPathForSimilarityMatrix参数,此作业将被执行。

outputSimilarityMatrix作用是将2.4产生的结果保存到用户通过outputPathForSimilarityMatrix参数设置的目录里。

3、partialMultiply作业

此作业也位于org.apache.mahout.cf.taste.hadoop.item.RecommenderJob包中,位于run函数中。分析此作业代码:

if (shouldRunNextPhase(parsedArgs, currentPhase)) {
      Job partialMultiply = new Job(getConf(), "partialMultiply");
      Configuration partialMultiplyConf = partialMultiply.getConfiguration();

      MultipleInputs.addInputPath(partialMultiply, similarityMatrixPath, SequenceFileInputFormat.class,
                                  SimilarityMatrixRowWrapperMapper.class);
      MultipleInputs.addInputPath(partialMultiply, new Path(prepPath, PreparePreferenceMatrixJob.USER_VECTORS),
          SequenceFileInputFormat.class, UserVectorSplitterMapper.class);
      partialMultiply.setJarByClass(ToVectorAndPrefReducer.class);
      partialMultiply.setMapOutputKeyClass(VarIntWritable.class);
      partialMultiply.setMapOutputValueClass(VectorOrPrefWritable.class);
      partialMultiply.setReducerClass(ToVectorAndPrefReducer.class);
      partialMultiply.setOutputFormatClass(SequenceFileOutputFormat.class);
      partialMultiply.setOutputKeyClass(VarIntWritable.class);
      partialMultiply.setOutputValueClass(VectorAndPrefsWritable.class);
      partialMultiplyConf.setBoolean("mapred.compress.map.output", true);
      partialMultiplyConf.set("mapred.output.dir", partialMultiplyPath.toString());

      if (usersFile != null) {
        partialMultiplyConf.set(UserVectorSplitterMapper.USERS_FILE, usersFile);
      }
      partialMultiplyConf.setInt(UserVectorSplitterMapper.MAX_PREFS_PER_USER_CONSIDERED, maxPrefsPerUser);

      boolean succeeded = partialMultiply.waitForCompletion(true);
      if (!succeeded) {
        return -1;
      }
    }

分析上面代码可知,此作业通过MultipleInputs.addInputPath()函数执行了SimilarityMatrixRowWrapperMapper.class和UserVectorSplitterMapper.class作为reduce的输入,reduce阶段执行了ToVectorAndPrefReducer.class类。

3.1 SimilarityMatrixRowWrapperMapper.class

此map作用是将similarity matrix每一行映射VectorOrPrefWritable格式。此map输入格式为(itemid,VectorWritable<itemid,similarscore>),输出格式为(itemid,VectorOrPrefWritable)。VectorOrPrefWritable类包含三个成员分别是:vector,long userid,float value。在此map阶段只是书写了VectorOrPrefWritable类的vector。

3.2 UserVectorSplitterMapper.class

此map作用是用户向量转化为VectorOrPrefWritable对象表示形式。此map输入为1.2作业结果即tempDir/preparePreferenceMatrix/userVectors文件,输出格式为(itemid,VectorOrPrefWritable)。此map阶段只书写了VectorOrPrefWritable类的userid和value。

3.3 ToVectorAndPrefReducer

这是partialMultiply作业的reduce阶段,此阶段的输入是3.1 map阶段和3.2 map阶段的输出结果,格式为(itemid,VectorOrPrefWritable),输出格式为(itemid,VectorAndPrefsWritable)。此阶段的工作方式为,将3.1 map和3.2 map传来的数据,分别写入VectorAndPrefsWritable中的List<Long> userIDs,List<Float> prefValues,Vector similarityMatrixColumn。

此作业的结果保存在tempDir/partialMultiply文件中

4、itemFiltering作业

当用户设置了filterFile文件时,此作业才会执行。此作业的作用是过滤掉文件中设置的item。

5、aggregateAndRecommend作业

此作业的map类为PartialMultiplyMapper,reduce类为AggregateAndRecommendReducer。

此作业的作用是提取出推荐结果。最后的推荐结果会保存到设置的output目录下。

当没有设置filterFile文件时,此作业的输入为3.3作业的输出文件tempDir/partialMultiply格式为(itemid,VectorAndPrefsWritable),输出格式为(userid,RecommendedItemsWritable)

此作业工作方式为:map阶段映射每个用户的preferences值和对应的item相似向量,即表示形式为(userIDWritable, PrefAndSimilarityColumnWritable),PrefAndSimilarityColumnWritable类里面记录了float prefValue和Vector similarityColumn。

reduce阶段首先判断booleanData参数,如果是true,执行reduceBooleanData,如果是false,执行reduceNonBooleanData,一般默认为false。reduce阶段计算方式如下所示:

/**
 * <p>computes prediction values for each user</p>
 *
 * <pre>
 * u = a user
 * i = an item not yet rated by u
 * N = all items similar to i (where similarity is usually computed by pairwisely comparing the item-vectors
 * of the user-item matrix)
 *
 * Prediction(u,i) = sum(all n from N: similarity(i,n) * rating(u,n)) / sum(all n from N: abs(similarity(i,n)))
 * </pre>
 */
AggregateAndRecommendReducer类reduce计算相似度代码如下:

@Override
  protected void reduce(VarLongWritable userID,
                        Iterable<PrefAndSimilarityColumnWritable> values,
                        Context context) throws IOException, InterruptedException {
    if (booleanData) {
      reduceBooleanData(userID, values, context);
    } else {
      reduceNonBooleanData(userID, values, context);
    }
  }

  private void reduceBooleanData(VarLongWritable userID,
                                 Iterable<PrefAndSimilarityColumnWritable> values,
                                 Context context) throws IOException, InterruptedException {
    /* having boolean data, each estimated preference can only be 1,
     * however we can't use this to rank the recommended items,
     * so we use the sum of similarities for that. */
    Iterator<PrefAndSimilarityColumnWritable> columns = values.iterator();
    Vector predictions = columns.next().getSimilarityColumn();
    while (columns.hasNext()) {
      predictions.assign(columns.next().getSimilarityColumn(), Functions.PLUS);
    }
    writeRecommendedItems(userID, predictions, context);
  }

  private void reduceNonBooleanData(VarLongWritable userID,
                        Iterable<PrefAndSimilarityColumnWritable> values,
                        Context context) throws IOException, InterruptedException {
    /* each entry here is the sum in the numerator of the prediction formula */
    Vector numerators = null;
    /* each entry here is the sum in the denominator of the prediction formula */
    Vector denominators = null;
    /* each entry here is the number of similar items used in the prediction formula */
    Vector numberOfSimilarItemsUsed = new RandomAccessSparseVector(Integer.MAX_VALUE, 100);

    for (PrefAndSimilarityColumnWritable prefAndSimilarityColumn : values) {
      Vector simColumn = prefAndSimilarityColumn.getSimilarityColumn();
      float prefValue = prefAndSimilarityColumn.getPrefValue();
      /* count the number of items used for each prediction */
      for (Element e : simColumn.nonZeroes()) {
        int itemIDIndex = e.index();
        numberOfSimilarItemsUsed.setQuick(itemIDIndex, numberOfSimilarItemsUsed.getQuick(itemIDIndex) + 1);
      }

      if (denominators == null) {
        denominators = simColumn.clone();
      } else {
        denominators.assign(simColumn, Functions.PLUS_ABS);
      }

      if (numerators == null) {
        numerators = simColumn.clone();
        if (prefValue != BOOLEAN_PREF_VALUE) {
          numerators.assign(Functions.MULT, prefValue);
        }
      } else {
        if (prefValue != BOOLEAN_PREF_VALUE) {
          simColumn.assign(Functions.MULT, prefValue);
        }
        numerators.assign(simColumn, Functions.PLUS);
      }

    }

    if (numerators == null) {
      return;
    }

    Vector recommendationVector = new RandomAccessSparseVector(Integer.MAX_VALUE, 100);
    for (Element element : numerators.nonZeroes()) {
      int itemIDIndex = element.index();
      /* preference estimations must be based on at least 2 datapoints */
      if (numberOfSimilarItemsUsed.getQuick(itemIDIndex) > 1) {
        /* compute normalized prediction */
        double prediction = element.get() / denominators.getQuick(itemIDIndex);
        recommendationVector.setQuick(itemIDIndex, prediction);
      }
    }
    writeRecommendedItems(userID, recommendationVector, context);
  }

  /**
   * find the top entries in recommendationVector, map them to the real itemIDs and write back the result
   */
  private void writeRecommendedItems(VarLongWritable userID, Vector recommendationVector, Context context)
    throws IOException, InterruptedException {

    TopItemsQueue topKItems = new TopItemsQueue(recommendationsPerUser);

    for (Element element : recommendationVector.nonZeroes()) {
      int index = element.index();
      long itemID;
      if (indexItemIDMap != null && !indexItemIDMap.isEmpty()) {
        itemID = indexItemIDMap.get(index);
      } else { //we don't have any mappings, so just use the original
        itemID = index;
      }
      if (itemsToRecommendFor == null || itemsToRecommendFor.contains(itemID)) {
        float value = (float) element.get();
        if (!Float.isNaN(value)) {

          MutableRecommendedItem topItem = topKItems.top();
          if (value > topItem.getValue()) {
            topItem.set(itemID, value);
            topKItems.updateTop();
          }
        }
      }
    }

    List<RecommendedItem> topItems = topKItems.getTopItems();
    if (!topItems.isEmpty()) {
      recommendedItems.set(topItems);
      context.write(userID, recommendedItems);
    }
  }



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值