记录一次使用LSTM神经网络进行量化交易预测

        除了工作之外的业余时间,就喜欢倒腾,最近在查阅研习 lstm 的原理并用于个人爱好实战中,确实给了我意想不到的效果,不同于普通股票金融类的走势预测。我个人是偏好于日内的高频量化交易,喜欢做剥皮交易。以下是从特征工程 建模到实际预测的一些过程,希望能帮助喜欢使用个人技能做交易的同志。

        

        LSTM(Long Short-Term Memory)是一种特殊类型的RNN(循环神经网络),它可以学习并记忆长时间序列中的模式。这使得LSTM非常适用于处理和预测时间序列数据,例如股票价格、气候变化等,这是我在调研中看到的并记住的一句话,我不需要预测股票价格,我只想通过我实盘交易的经验来建立特征,并作为训练数据,特种数据如下

time date open high low close vol closeTime cje bs but sell ignore MACD Signal MACD_Hist ATR RSI signal
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值