「题解」快速傅立叶之二

「题解」快速傅立叶之二

前言

这篇博客是我从晴歌。大佬这里扒下来的。

写得非常好,如果大佬发现了,也请见谅!

题目描述

点这里

给出序列 a [ 0 ] , a [ 1 ] , . . . , a [ n − 1 ] a[0],a[1],...,a[n-1] a[0],a[1],...,a[n1] b [ 0 ] , b [ 1 ] , . . . , b [ n − 1 ] b[0],b[1],...,b[n-1] b[0],b[1],...,b[n1] .

c [ k ] = ∑ i = k n − 1 a [ i ] b [ i − k ] c[k]=\sum_{i=k}^{n-1}a[i]b[i-k] c[k]=i=kn1a[i]b[ik] .

求序列 c [ ] c[] c[] .

题解

这题就是BZOJ_3527[ZJOI2014]力(FFT+卷积)的后半段…

我们来重新分析一下.

首先我们要知道卷积的标准形式:

c [ i ] = ∑ j = 0 i a [ j ] b [ i − j ] c[i]=\sum_{j=0}^ia[j]b[i-j] c[i]=j=0ia[j]b[ij]

很明显这道题并不是卷积的形式,因为卷积是和一定,二这道题却是差一定.

我们其实可以画画图(我脑洞大)…

然后可以发现差一定的时候就是你+1,我也+1,你-1,我也-1.

但是如果我们把其中一个序列倒过来,就变成了你+1,我-1,你-1,我+1,就变成和一定的了!这一点灰常重要!

然后上次我推的那个太不自然,我们这次好好分析一下.

1.把a倒置.

把a倒置之前原式为(我们这里令 n = n − 1 n=n-1 n=n1 ,序列就是 0   n 0~n 0 n ,方便一些)

∑ j = k n a [ i ] b [ i − k ] \sum_{j=k}^na[i]b[i-k] j=kna[i]b[ik]

我们设倒置之后的序列为 a ′ [ ] a'[] a[] ,则有

原 式 ⟺ ∑ i = k n a ′ [ n − i ] b [ i − k ] 原式\Longleftrightarrow\sum_{i=k}^na'[n-i]b[i-k] i=kna[ni]b[ik]

换元,得到:

∑ i = 0 n − k a ′ [ n − ( i + k ) ] b [ ( i + k ) − k ] \sum_{i=0}^{n-k}a'[n-(i+k)]b[(i+k)-k] i=0nka[n(i+k)]b[(i+k)k]

∑ i = 0 n − k a ′ [ n − i − k ] b [ i ] \sum_{i=0}^{n-k}a'[n-i-k]b[i] i=0nka[nik]b[i]

也就是:

c [ k ] = ∑ i = 0 n − k a ′ [ n − i − k ] b [ i ] c[k]=\sum_{i=0}^{n-k}a'[n-i-k]b[i] c[k]=i=0nka[nik]b[i]

如果我们设 A [ k ] = ∑ i = 1 k a ′ [ k − i ] b [ i ] A[k]=\sum_{i=1}^ka'[k-i]b[i] A[k]=i=1ka[ki]b[i] ,那么就有

c [ k ] = A [ n − k ] c[k]=A[n-k] c[k]=A[nk]

这样我们求个卷积,然后倒过来输出就好了.

2.把b倒置

在网上看到好几篇题解都说是倒置b,但是自己推了好长时间都没有推出来,最后发现其中有一点奥妙…

倒置之前原式

∑ i = k n a [ i ] b [ i − k ] \sum_{i=k}^na[i]b[i-k] i=kna[i]b[ik]

我们设倒置之后的序列为 b ′ [ ] b'[] b[] ,则有

原 式 ⟺ ∑ i = k n a [ i ] b ′ [ n − i + k ] 原式\Longleftrightarrow\sum_{i=k}^na[i]b'[n-i+k] i=kna[i]b[ni+k]

换元,得到

∑ i = 0 n − k a [ i + k ] b ′ [ n ( i + k ) + k ] \sum_{i=0}^{n-k}a[i+k]b'[n_(i+k)+k] i=0nka[i+k]b[n(i+k)+k]

也就是

∑ i = 0 n − k a [ i + k ] b ′ [ n − i ] \sum_{i=0}^{n-k}a[i+k]b'[n-i] i=0nka[i+k]b[ni].

可以发现和是定值 n + k n+k n+k ,但是循环上界却只有 n − k n-k nk .

我们想要得到的应该是

∑ i = 0 n + k a [ i + k ] b ′ [ n − i ] \sum_{i=0}^{n+k}a[i+k]b'[n-i] i=0n+ka[i+k]b[ni].

我们得到的式子少了一部分.但是观察可以发现,我们得到的式子的循环上界是 n − k n-k nk ,对应 a [ n ] b ′ [ k ] a[n]b'[k] a[n]b[k] .

继续向上的 a [ i ] a[i] a[i] 都为 0 0 0 ,而且都后的 b [ i ] b[i] b[i] 会越界 b [ 负 数 ] b[负数] b[] .

所以这个就可以表示一个卷积了.

c [ k ] = ∑ i = 0 n + k a [ n + k − i ] b ′ [ i ] c[k]=\sum_{i=0}^{n+k}a[n+k-i]b'[i] c[k]=i=0n+ka[n+ki]b[i]

这个式子是根据原式表示一个卷积二构造出来的等价的式子,只是看起来比较方便而已.

我们设 B [ i ] = ∑ i = 0 k a [ i ] b [ k − i ] B[i]=\sum_{i=0}^ka[i]b[k-i] B[i]=i=0ka[i]b[ki] .

这样就可以得到:

c [ k ] = B [ n + k ] c[k]=B[n+k] c[k]=B[n+k]

接下来是代码:

#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;

#define rep(i,__l,__r) for(register int i=__l,i##_end_=__r;i<=i##_end_;++i)
#define fep(i,__l,__r) for(register int i=__l,i##_end_=__r;i>=i##_end_;--i)
#define writc(a,b) fwrit(a),putchar(b)
#define mp(a,b) make_pair(a,b)
#define ft first
#define sd second
#define LL long long
#define ull unsigned long long
#define pii pair<int,int>
#define Endl putchar('\n')
// #define FILEOI
// #define int long long

#ifdef FILEOI
    #define MAXBUFFERSIZE 500000
    inline char fgetc(){
        static char buf[MAXBUFFERSIZE+5],*p1=buf,*p2=buf;
        return p1==p2&&(p2=(p1=buf)+fread(buf,1,MAXBUFFERSIZE,stdin),p1==p2)?EOF:*p1++;
    }
    #undef MAXBUFFERSIZE
    #define cg (c=fgetc())
#else
    #define cg (c=getchar())
#endif
template<class T>inline void qread(T& x){
    char c;bool f=0;
    while(cg<'0'||'9'<c)f|=(c=='-');
    for(x=(c^48);'0'<=cg&&c<='9';x=(x<<1)+(x<<3)+(c^48));
    if(f)x=-x;
}
inline int qread(){
    int x=0;char c;bool f=0;
    while(cg<'0'||'9'<c)f|=(c=='-');
    for(x=(c^48);'0'<=cg&&c<='9';x=(x<<1)+(x<<3)+(c^48));
    return f?-x:x;
}
template<class T,class... Args>inline void qread(T& x,Args&... args){qread(x),qread(args...);}
template<class T>inline T Max(const T x,const T y){return x>y?x:y;}
template<class T>inline T Min(const T x,const T y){return x<y?x:y;}
template<class T>inline T fab(const T x){return x>0?x:-x;}
inline int gcd(const int a,const int b){return b?gcd(b,a%b):a;}
inline void getInv(int inv[],const int lim,const int MOD){
    inv[0]=inv[1]=1;for(int i=2;i<=lim;++i)inv[i]=1ll*inv[MOD%i]*(MOD-MOD/i)%MOD;
}
template<class T>void fwrit(const T x){
    if(x<0)return (void)(putchar('-'),fwrit(-x));
    if(x>9)fwrit(x/10);putchar(x%10^48);
}
inline LL mulMod(const LL a,const LL b,const LL mod){//long long multiplie_mod
    return ((a*b-(LL)((long double)a/mod*b+1e-8)*mod)%mod+mod)%mod;
}

class fft_task{
private:
    static const int MAXN=1<<20;
    const double Pi=acos(-1.0);
    struct cplx{
        double vr,vi;//实部和虚部
        cplx(const double R=0,const double I=0):vr(R),vi(I){}//构造函数
        //------------------overload----------------//
        cplx operator + (const cplx a)const{return cplx(vr+a.vr,vi+a.vi);}//重载加法
        cplx operator - (const cplx a)const{return cplx(vr-a.vr,vi-a.vi);}
        cplx operator * (const cplx a)const{return cplx(vr*a.vr-vi*a.vi,vr*a.vi+a.vr*vi);}
        cplx operator / (const double var)const{return cplx(vr/var,vi/var);}
    };

    cplx a[MAXN+5],b[MAXN+5];
    int revi[MAXN+5],n,m;

    inline void init(){
        for(int i=0;i<n;++i)revi[i]=(revi[i>>1]>>1)|((i&1)?n>>1:0);
    }

    inline void fft(cplx* f,const short opt=1){
        for(int i=0;i<n;++i)if(i<revi[i])
            swap(f[i],f[revi[i]]);
        for(int p=2;p<=n;p<<=1){
            int len=p/2;
            cplx tmp(cos(Pi/len),opt*sin(Pi/len));
            for(int k=0;k<n;k+=p){
                cplx buf(1,0);
                for(int l=k;l<k+len;++l,buf=buf*tmp){
                    cplx tt=buf*f[len+l];
                    f[len+l]=f[l]-tt;
                    f[l]=f[l]+tt;
                }
            }
        }
        if(opt==-1)for(int i=0;i<n;++i)f[i]=f[i]/n;
    }
public:
    inline void launch(){
        n=m=qread()-1;
        int t=n;
        for(int i=0;i<=n;++i)scanf("%lf %lf",&a[i].vr,&b[n-i].vr);
        for(m+=n,n=1;n<=m;n<<=1);
        init();
        fft(a),fft(b);
        for(int i=0;i<n;++i)a[i]=a[i]*b[i];
        fft(a,-1);
        for(int i=t;i<=t*2;++i)printf("%d\n",(int)(a[i].vr+0.5));
    }
}This;

signed main(){
#ifdef FILEOI
    freopen("1.in","r",stdin);
    freopen("file.out","w",stdout);
#endif
    This.launch();
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
【优质项目推荐】 1、项目代码均经过严格本地测试,运行OK,确保功能稳定后才上传平台。可放心下载并立即投入使用,若遇到任何使用问题,随时欢迎私信反馈与沟通,博主会第一时间回复。 2、项目适用于计算机相关专业(如计科、信息安全、数据科学、人工智能、通信、物联网、自动化、电子信息等)的在校学生、专业教师,或企业员工,小白入门等都适用。 3、该项目不仅具有很高的学习借鉴价值,对于初学者来说,也是入门进阶的绝佳选择;当然也可以直接用于 毕设、课设、期末大作业或项目初期立项演示等。 3、开放创新:如果您有一定基础,且热爱探索钻研,可以在此代码基础上二次开发,进行修改、扩展,创造出属于自己的独特应用。 欢迎下载使用优质资源!欢迎借鉴使用,并欢迎学习交流,共同探索编程的无穷魅力! 基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip 基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip 基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip
提供的源码资源涵盖了安卓应用、小程序、Python应用和Java应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码中配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问题解决能力。此外,在求职或创业过程中,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几点:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码中的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需求。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值