
人工智能与边缘计算
文章平均质量分 87
欢迎来到云计算与边缘计算专栏!在这里,我们将深入探讨云计算与边缘计算的前沿技术与发展趋势。从理论到实践,我们将为您揭示云计算的高效弹性与边缘计算的实时响应背后的奥秘。无论您是初学者还是行业专家,这里都有您需要的知识与灵感。让我们一起探索计算技术的未来,共同开启智能生活的新篇章!
千里马不常有
种一棵树最好的时间是十年前,或者现在!
展开
-
DNN云边协同工作汇总(持续更新)
在进行调度的过程中可以使用垂直划分和水平划分,也可以直接将一个DNN任务作为划分单位。云边协同旨在充分利用云边端资源完成DNN任务的推理计算,将整体模型进行划分后,利用终端设备、边缘服务器以及云计算中心的计算资源,将DNN划分为多个部分,分别部署在不同设备上进行推理。最优的分区点和边缘选择取决于特定深度学习架构的推理成本模型和从设备到边缘服务器的通道模型,这在实际的MEC中是具有挑战性的。DADS使用图论中的最大流最小割算法对DAG拓扑结构进行了分析,解决了一部分含有拓扑结构的模型的划分问题。原创 2024-11-13 15:45:32 · 1609 阅读 · 0 评论 -
基于模型划分的云边协同推理算法
当前,深度神经网络快速发展并广泛应用于各种智能服务行业,如自然语言处理、计算机视觉和语音识别等领域。为了加速DNN模型的推理速度并优化其性能,本文结合SDN技术提出了基于模型划分的云边协同推理算法。该算法能够对动态环境下的边端推理模型进行自适应划分与卸载,通过将传统的DQN算法与SDN的全局视图相结合,得到边端模型的最优划分与卸载策略,构建任务复杂度预测器并结合SDN控制器分配任务执行环境。试验分析表明,与现有推理方法相比,算法的推理时延显著降低。原创 2024-10-24 10:55:23 · 1644 阅读 · 0 评论 -
AI模型边云协作框架:云端大模型与边缘小模型协同分布式训练和部署
生成式人工智能(Generative Artificial Intelligence, GenAI)通过内容生成为用户提供多样化的服务,逐渐成为未来网络服务的关键组成部分。然而,训练和部署大型人工智能模型往往伴随着巨大的计算和通信开销。此外,依赖云端的生成任务需要高性能计算设施和远程访问能力,这给集中式AI服务带来了严峻的挑战。因此,亟需一种分布式服务架构,将部分任务从云端迁移至边缘,以实现更私密、实时且个性化的用户体验。原创 2024-09-08 16:14:23 · 2079 阅读 · 0 评论 -
二、MMRotate旋转框目标检测训练DOTA数据集(模型推理与部署,保存推理结果为xml文件并构建镜像)
在上一篇文章中介绍了MMRotate的概述、安装和训练Dota数据集全流程,由于文章篇幅限制还剩下一部分模型的推理和部署环节没有写,为避免后续对这部分工作的遗忘,决定还是补充上这部分的笔记,仅作记录,如有不足之处还请指出!原创 2024-09-04 23:03:34 · 1694 阅读 · 0 评论 -
AI新热点:边云协同:大模型结合小模型(大小模型联合推理)
AI模型规模不断剧增已是不争的事实。模型参数增长至百亿、千亿、万亿甚至十万亿,大模型在算力推动下演变为人工智能领域一场新的“军备竞赛”。这种竞赛很大程度推动了人工智能的发展,但随之而来的能耗和端侧部署问题限制了大模型应用落地。2022达摩院十大科技趋势指出,“大模型参数竞赛正进入冷静期,大小模型将在云边端协同进化”。历史上计算形态经历了几次重要变化:当本地计算成本低于通信成本时,计算模式由分时共享机制迅速转变为本地计算完成方式;当网络技术进步使得通信成本远低于计算成本时,开始出现由。原创 2024-06-26 16:55:20 · 12219 阅读 · 2 评论 -
一、基于MMrotate旋转目标框检测(安装说明与踩坑记录)
MMRotate 是一款基于 PyTorch 的旋转框检测的开源工具箱,是 OpenMMLab 项目的成员之一。里面包含了rcnn、faster rcnn、r3det等各种旋转目标的检测模型,适合于遥感图像领域的目标检测。原创 2024-06-04 23:47:41 · 5318 阅读 · 20 评论 -
时间序列预测:基于PyTorch框架的循环神经网络(RNN)实现销量预测
主要过程如下:1、首先读取数据集csv文件,读取每天每个地区的销量数据,整理为按照地区分类的销量数据csv文件,并且将每天的销量数据合并为以周(星期)为单位的销量汇总数据。以下代码实现都是按照周进行预测的,比如说可以预测未来1周,2周,3周...等某地的销量数据。2、数据整理好之后,执行train.py文件开始训练模型,模型生成的文件会保存至models文件夹下。3、待训练完成之后执行predict.py文件,修改文件中的开始日期进行预测未来几周的销量数据。4、观察模型训练效果,如果结构不理想原创 2024-04-26 10:53:34 · 4021 阅读 · 2 评论 -
minikube安装kubernetes以及start启动报错解决办法:Unable to find image ‘gcr.io/k8s-minikube/kicbase
使用minikubu安装kuburnetes集群,所遇到的问题,以及如何设置参数。以及报错:Unable to find image 'gcr.io/k8s-minikube/kicbase解决办法等原创 2023-03-27 15:54:36 · 2873 阅读 · 1 评论 -
释放云计算的力量:Kubernetes 深度指南
Kubernetes的目标是让应用程序部署和管理变得更加简单和自动化,通过容器把应用程序和环境分离开来,并将它们放入自包含的单元中进行部署和管理。Kubernetes的设计理念是将应用程序的部署、管理、自动化、可观察性等关键功能集合在一起,提供了高度可用、弹性、可伸缩、自我修复的应用程序管理平台。容器化技术是一种虚拟化技术,它将应用程序和其执行环境打包在一起,以便能够在任何基本上相同的计算机环境上运行。下面是容器化技术的简介。转载 2023-04-26 11:31:18 · 578 阅读 · 0 评论 -
知识图谱有哪些应用领域?
知识图谱通常应用于自然语言处理和人工智能领域,常用于提高机器学习模型的准确性和效率。它还可以用于数据挖掘、信息检索、问答系统和语义搜索等领域。近年来知识图谱在电子商务、金融、公安、医疗等行业逐步开始落地,在这些行业的渗透、深入中,知识图谱愈来显现其基础性作用。原创 2022-12-17 10:56:44 · 5260 阅读 · 0 评论 -
英文论文(sci)解读复现:基于YOLOv5的自然场景下苹果叶片病害实时检测
针对自然场景中复杂背景下多尺度、异型苹果叶片病害的准确定位与识别问题,提出了一种基于改进YOLOv5s模型的苹果叶片病害检测方法。首先,该模型利用双向特征金字塔网络(BiFPN)高效实现多尺度特征融合;然后,加入变压器和卷积块注意模块(CBAM)注意机制,减少无效背景信息的干扰,提高疾病特征的表达能力,提高模型的准确性和召回率。实验结果表明,所提出的 BTC-YOLOv5s模型(模型尺寸为15.8M)能够在自然场景中有效检测4种苹果叶片病害,平均精度(mAP)为84.3%。原创 2023-07-31 18:16:20 · 4178 阅读 · 0 评论 -
通俗解释机器学习中的召回率、精确率、准确率
网络上很多地方分不清准确率和精确率,在这里先正确区分一下精确率和准确率,以及他们的别称。提升精确率是为了不错报、提升召回率是为了不漏报原创 2023-02-20 10:06:41 · 13014 阅读 · 4 评论 -
基于多模态融合与图神经网络的用户精准感知系统研究
近年来人工智能技术的发展影响到了企业与个人的方方面面,深度学习技术作为人工智能技术的一个分支发展尤为迅速,并且在文本、语音、图像等数据上已经取得了很大的成功。目前,将语音、图像、文本等多种类型的数据进行多模态融合,服务于具体的业务场景是人工智能的一个重要发展方向。除了图像、文本、语音等数据外,许多行业领域还存在着图结构的数据,例如社会科学中的社交网络、电子商务领域中的商品与用户关系、通信网络的拓扑结构等,为了充分挖掘这些图结构数据的特征,图神经网络技术被提出,并在很多行业表现出巨大的发展潜力。原创 2023-07-13 15:21:18 · 1550 阅读 · 0 评论 -
大规模端云协同智能计算(大小模型端云协同联合学习)
端云协同智能就是力图通过将部分智能推理任务或智能推理任务的部分阶段卸载到端侧进行处理,利用端侧本地即时处理的优势,削减响应延时,降低云服务器负载;同时用户原始数据不离开本地,数据安全隐私可以得到良好的保障原创 2024-04-15 11:11:59 · 5573 阅读 · 0 评论 -
机器学习术语(假设函数、损失函数、过拟合、欠拟合)
机器学习是一门专业性很强的技术,它大量地应用了数学、统计学上的知识,因此总会有一些蹩脚的词汇,这些词汇就像“拦路虎”一样阻碍着我们前进,甚至把我们吓跑。因此认识,并理解这些词汇是首当其冲的任务。本节将介绍机器学习中常用的基本概念,为后续的知识学习打下坚实的基础。转载 2022-11-05 15:47:02 · 1085 阅读 · 0 评论 -
人工智能:通俗易懂理解深度学习与神经网络
深度学习(Deep Learning)最早是由 Hinton 等在2015年提出的概念,深度学习作为机器学习的一种,能够胜任许多复杂的任务。它从提出至今已经有了长足的发展,在各个领域和学科有广泛的应用(侯宇青阳等,2017)。深度学习可以从广泛的数据中提取特征进行学习,典型的应用有文字识别,语音识别和图像识别,各种新的深度学习网络层出不穷,各个领域的应用也逐渐成熟。在实际应用领域,“深度学习”这一名词指的是训练神经网络,使其学习特征并完成不同任务。原创 2022-10-02 22:47:06 · 4219 阅读 · 0 评论 -
使用ChatGPT帮我们写一篇论文,最后查重的重复率会是多少?
使用ChatGPT帮我们写一篇论文,最后查重的重复率会是多少?ChatGpt一经发布就大火,迅速应用在各个领域,尤其在程序圈自动帮我们写代码着实是圈了一大波粉。那么它用在科研领域会出现怎样的效果呢,当我们写论文纠结几个关键词不知如何表达的时候GPT能否帮助我们生成想要的语句呢?因此,我们就随便找个题目进行测试,先让GPT生成论文大纲,然后一步步逐步细问每一个大纲的具体内容,不断去补充,生成,然后总结,最后整理成论文去查重,看看重复率到底是多少。下面就一起来试试吧,假设论文题目是:无人化苹果果园的分析原创 2022-12-17 10:19:19 · 107631 阅读 · 35 评论 -
边缘计算:一文理解云边端协同架构中的高性能云计算、边缘计算、云边协同
综上所诉,云边协同具体涉及到资源、管理和应用协同等多个层面。为了构建灵活、高效的云边协同计算环境,需要在不同层面实现云计算和边缘计算的协同,以优势互补的方式克服云计算和边缘计算中各自存在的缺点,放大云计算与边缘计算的价值。边缘计算至关重要,因为它为改进和创新理念铺平了道路,让企业在企业和工业层面以最大的运营效率、更高的安全性和更好的性能运营。边缘计算在每个垂直行业都是可行的,无论是银行、医疗保健、零售还是采矿。原创 2022-10-01 23:15:30 · 7013 阅读 · 0 评论 -
简述人工智能,及其三大学派:符号主义、连接主义、行为主义
说白了就是你告诉机器你想做什么?并且给它一堆数据让它去模仿着做(比如,咱们上高中,老师会告诉我们一个目标就是考高分,然后给我们一堆练习册和答案,我们的目的就是让我们做的题的解和答案一致)原创 2022-10-30 22:50:19 · 20798 阅读 · 0 评论 -
困难样本挖掘:Hard Sample Mining(原理及实现)
困难例挖掘方法通常可以提高目标检测器的性能,因为它受到不平衡训练集的影响。在这项工作中,两种现有的困难例子挖掘方法(LRM和焦点损失,FL)被调整并结合到最先进的实时目标检测器YOLOv5中。广泛地评估了所提出的方法对于提高困难例性能的有效性。在2021年Anti-UAV挑战数据集上,与使用原始损失函数相比,所提出的方法使mAP提高了3%,与单独使用困难挖掘方法(LRM或FL)相比,提高了约1%。原创 2024-04-01 11:34:23 · 7928 阅读 · 0 评论 -
目标检测YoloV5模型优化:数据集处理(标注原则)
数据数量还是数据质量vs.如果要追求数据的质量,我们就必须有严格而统一的标注规则,反之就是指标下降。转载 2023-06-20 18:04:28 · 5388 阅读 · 0 评论 -
LSTM模型预测时间序列:根据历史销量数据预测商品未来销量
经常会遇到一些需要预测的场景,比如预测品牌销售额,预测产品销量。今天分享一波使用 LSTM 进行端到端时间序列预测的完整代码和详细解释。我们先来了解两个主题:什么是时间序列分析?什么是 LSTM?时间序列分析:时间序列表示基于时间顺序的一系列数据。它可以是秒、分钟、小时、天、周、月、年。未来的数据将取决于它以前的值。在现实世界的案例中,我们主要有两种类型的时间序列分析:单变量时间序列(只有一列,因此即将到来的未来值将仅取决于它之前的值。如:仅依据历史销量数据预测未来数据)多元时间序列(不同类型的特征值并且目原创 2023-11-24 15:51:19 · 16796 阅读 · 5 评论 -
云边协同与人工智能AI的深度融合(云端训练、边端推理)
云边协同是一种新型计算范式,其将云计算强大的资源能力与边缘计算超低的时延特性结合起来,实现了边缘支撑云端应用,云端助力边缘本地化需求的协同优化目标。AI和边缘计算已获得国内外学术界和工业界的广泛关注和认可,并且已经在很多商业场景下发挥作用。将AI应用部署至边缘已成为提升智能服务的有效途径。尽管目前边缘智能仍处于发展的初期,然而,边缘智能够产生极大的促进效果,并成为各行各业的黏合剂和智能产业发展的催化剂,促进多个行业的升级转型。[1]华为云原生团队:AI 与边缘计算结合的双向优化。原创 2023-03-28 22:18:43 · 8049 阅读 · 3 评论 -
深度学习入门指南,一文理解人工智能领域的深度学习、神经网络
说到深度学习,我们首先需要知道,什么是学习。著名学者赫伯特·西蒙教授(Herbert Simon,1975年图灵奖获得者、1978年诺贝尔经济学奖获得者)曾对“学习”给了一个定义:“如果一个系统,能够通过执行某个过程,就此改进了它的性能,那么这个过程就是学习”。大牛就是大牛,永远都是那么言简意赅,一针见血。从西蒙教授的观点可以看出,学习的核心目的,就是改善性能。其实对于人而言,这个定义也是适用的。比如,我们现在正在学习“深度学习”的知识,其本质目的就是为了“提升”自己在机器学习上的认知水平。转载 2022-09-22 17:29:17 · 808 阅读 · 0 评论 -
什么是知识,什么是知识图谱,有什么作用,有哪些应用领域?
首先看一下什么是知识。有读者可能会提出这样的问题,在大数据时代,人类拥有海量的数据,这是不是代表人类可以随时随地利用无穷无尽的知识呢?答案是否定的。知识是人类在实践中认识客观世界(包括人类自身)的成果,它包括事实、信息、描述以及在教育和实践中获得的技能。知识是人类从各个途径中获得的经过提升、总结与凝炼的系统的认识。因此,可以这样理解,知识是人类对信息进行处理之后的认识和理解,是对数据和信息的凝炼、总结后的成果。举一个简单的例子,226.1厘米,229厘米,都是客观存在的孤立的数据。原创 2022-12-17 10:34:59 · 2631 阅读 · 0 评论 -
边缘云是什么?一分钟漫画读懂!
转载 2024-01-05 11:57:52 · 1878 阅读 · 0 评论 -
边缘智能:边缘计算和人工智能的深度融合
通信技术正在经历一场新的革命。第五代蜂窝无线系统(5G)的出现,带来了增强型移动宽带(eMBB)、超可靠低延迟通信(URLLC)和大规模机器类型通信(mMTC)。随着物联网(IoT)的普及,广泛分布的移动和物联网设备产生了更多的数据,可能比超大规模云数据中心产生的数据还要多。具体来说,根据爱立信的预测,45%到2024年,全球互联网数据的40ZB将由物联网设备产生。将如此庞大的数据从边缘转移到云端是非常棘手的,因为这可能会导致网络过度拥堵。原创 2023-06-19 21:44:16 · 3508 阅读 · 0 评论 -
边云协同:大小模型如何协同推理?
历史上计算形态经历了几次重要变化。当本地计算成本低于通信成本时,计算模式由分时共享机制迅速转变为本地计算完成方式;当网络技术进步使得通信成本远低于计算成本时,开始出现由本地计算向云计算的过渡。随着硬件成本降低、计算能力提升、通信带宽飞跃、传感器感知能力进化等技术进步持续发生,传统计算长久以“算力为王”的模式来部署完成,即任务汇聚到大型机上集中处理,而后分散到用户终端设备处理,再然后相当一部分的计算任务重新汇聚到云计算中心处理。原创 2023-06-19 18:43:48 · 8045 阅读 · 0 评论 -
k8s+kubeedge+sedna安装全套流程+避坑指南+解决办法
最近在学习边缘计算要用到kubeedge,安装了好多次总会遇到各种各样的问题,因此在这里一一列出,以方便下次安装。则里面可能出错的地方太多,如果有问题,请私信联系。原创 2023-04-17 18:45:29 · 13081 阅读 · 9 评论 -
什么是参数服务器?为什么要使用参数服务器?
近些年来,这个词汇频频出现在各大顶级期刊,会议,学术报告上,成为研究热点之一。如此前沿的名词背后究竟隐藏着什么秘密?本文就参数服务器这一热点话题进行简要分析,带领读者揭开其神秘面纱。转载 2023-04-11 10:00:49 · 1283 阅读 · 0 评论 -
kubernetes+KubeEdge云边环境的安装与部署
最近在学习云边协同,需要搭建一个云边协同的实验环境,kubernetes+KubeEdge+sedna,安装过程中遇到了一系列的问题,特此记录总结。原创 2023-03-14 18:30:28 · 5360 阅读 · 1 评论 -
KubeEdge安装加入边缘节点报错: error unmarshaling JSON: while decoding JSON: json: cannot unmarshal number into
粗略看这个错误,咋一看是json解析问题,难道是自己哪里配置文件写错了?number类型写成String了?不知情的也许会这样去检查,浪费太多时间,解决办法最后经过各项检查分析,发现是自己的keadm版本和kubeEdge版本不一致造成的,所以去官网将keadm换成跟kubeEdge一致的版本就可以了。原创 2023-03-14 15:10:47 · 1764 阅读 · 0 评论 -
安装KubeEdge报错Error: edge node join failed: unable to determine image API version: rpc error: code = U
安装KubeEdge报错,报错信息 Error: edge node join failed: unable to determine image API version: rpc error: code = Unavailable desc = connection error: desc => "transport: Error while dialing dial unix /run/containerd/containerd.sock: connect: no such file or原创 2023-03-14 14:57:21 · 2514 阅读 · 0 评论 -
AI开发基本流程介绍
AI(人工智能)是通过机器来模拟人类认识能力的一种科技能力。AI最核心的能力就是根据给定的输入做出判断或预测。转载 2023-02-23 21:45:46 · 6362 阅读 · 0 评论 -
曹建农院士:未来边缘计算:趋于分布式智能
在过去十几年中,云计算已经成为主流技术,改变了很多工业、政府和组织的IT服务的运营模式,也带来了包括商业模式和技术上的诸多革新。但是,云计算面对现在和未来的IoT的应用,也有一些不足之处。IoT起源于1999年,当时RFID技术刚刚兴起,英国一名从事智能家居产业科学家Kevin Ashton预见到,如果RFID联接到每一个物件上,或者说家里的每一个家具、电器上,就会形成一个新的网络。这样的网络可以和当时兴起的Internet相媲美,所以给它取名叫 IoT。转载 2023-02-23 10:05:24 · 595 阅读 · 0 评论 -
询问ChatGPT来了解什么是边缘计算,有哪些特点,有哪些关键技术,和云计算的关系是什么?
边缘计算是一种计算架构,它将计算和存储资源移动到数据的源头或接近数据的源头,而不是将数据传输到远程的云服务器进行处理。这样做的优势在于减少了数据的传输量,提高了数据处理的效率,降低了延迟。边缘计算的应用领域包括物联网、自动驾驶、智能网路、智能城市等,其中需要处理大量实时数据,并且对延迟要求较低的场景。边缘计算的基础设施包括边缘计算节点、边缘计算网络和边缘计算平台。边缘计算工程师是一种专门负责开发和维护边缘计算系统的工程师。原创 2022-12-17 10:19:47 · 2190 阅读 · 0 评论 -
为什么深度学习需要与边缘计算进行结合?如何结合?
其中,样本迁移的基本是需要将源数据和目标标签进行变换最终进入到新的维度空间,该空间可能和原始空间具有复杂的变换关系,最终在变换中通过对各类距离的最小化约束完成特征的迁移,而经过距离优化过程中同时完成了模型的迁移。以电商为例,在用户侧进行购物推荐算法的部分计算,可以有效缓解网站上的计算单元的负荷,并可以实现在计算时间内近乎实时性的根据用户的喜好完成推荐任务,这就是边缘计算在云计算大环境下的实际应用。单一的高性能大容量计算单元正在被分布式的云计算协作取代,这样的取代具有更高的速度,并能完成某些实时性工作。原创 2022-11-01 20:43:55 · 2185 阅读 · 0 评论 -
什么是云计算?什么是边缘计算?为什么需要云边协同?
随着物联网趋势的不断加深和 5G 等网络建设的持续发展,消费物联网和产业物联网设备都将与日俱增。目前的智能物联网设备大都采取通过将数据通过网络上发至云端,由云端进行统一的处理。然而广泛的智能终端接入和海量的感知数据在传输过程中占用的巨大带宽,将数据直接传输至云端也增加了隐私泄漏的风险。在边缘侧进行计算可以减少了核心网络的流量从而释放网络带宽的压力,也完成了一定的数据保护,但是其资源受限会导致的无法满足模型精度需求。原创 2022-12-02 23:03:52 · 8109 阅读 · 1 评论