Dreamoon likes to play with sets, integers and . is defined as the largest positive integer that divides both a and b.
Let S be a set of exactly four distinct integers greater than 0. Define S to be of rank k if and only if for all pairs of distinct elements si, sjfrom S, .
Given k and n, Dreamoon wants to make up n sets of rank k using integers from 1 to m such that no integer is used in two different sets (of course you can leave some integers without use). Calculate the minimum m that makes it possible and print one possible solution.
The single line of the input contains two space separated integers n, k (1 ≤ n ≤ 10 000, 1 ≤ k ≤ 100).
On the first line print a single integer — the minimal possible m.
On each of the next n lines print four space separated integers representing the i-th set.
Neither the order of the sets nor the order of integers within a set is important. If there are multiple possible solutions with minimal m, print any one of them.
1 1
5 1 2 3 5
2 2
22 2 4 6 22 14 18 10 16
For the first example it's easy to see that set {1, 2, 3, 4} isn't a valid set of rank 1 since
题意:给一个N,K。要找N个集合,每个集合有四个不同的数字,每个数字只能在一个集合。要让每个集合满足以下条件:
集合中任意两个数字的gcd(最大公约数)为K。
现在要让N个集合中最大的数字最小,并输出方案。
当K==1的时候,我们要让集合中的每个数两两互质。
当K!=1的时候,我们将K==1的时候的方案的每个数乘以K,就是答案。
所以我们只要解决K==1的情况即可。换句话说,问题就是找n个集合,每个集合中数两两互质,并且一个数只属于一个集合。要让N个集合中最大的数最小。
假设我们已知前N个集合的最大的数为x,那么对于第N+1个集合来说,我们就是要从x+1开始找,找四个互质的数,并且最大的数最小。
假设x+1为奇数,我们发现:x+1,x+2,x+3,x+5,这四个数一定能构成一个集合。
假设x+1为偶数,我们发现若x+1必选,最优情况下4个数为:x+1,x+2,x+4, x+6。
显然当x+1为偶数的时候,不选x+1,选x+2一定更优。当x+1为奇数的时候,选x+1显然最优。
初始的时候x=0。我们可以预处理出n个集合中的数。复杂度O(n)。
代码如下:
#include<stdio.h>
#include<algorithm>
#include<queue>
#include<stack>
#include<map>
#include<set>
#include<vector>
#include<iostream>
#include<string.h>
#include<string>
#include<math.h>
#include<stdlib.h>
#define inff 0x3fffffff
#define eps 1e-8
#define nn 210000
#define mod 1000000007
typedef long long LL;
const LL inf64=LL(inff)*inff;
using namespace std;
LL a[11000][6];
int n,k;
void init()
{
int i,j;
LL id=1;
for(i=1;i<=10000;i++)
{
for(j=1;j<=3;j++)
{
a[i][j]=id++;
}
a[i][4]=++id;
id+=2;
}
}
int main()
{
int i,j;
init();
while(scanf("%d%d",&n,&k)!=EOF)
{
printf("%I64d\n",a[n][4]*(LL)k);
for(i=1;i<=n;i++)
{
for(j=1;j<=4;j++)
{
printf("%I64d%c",a[i][j]*k,j==4?'\n':' ');
}
}
}
return 0;
}