求数组的最大差值(maxij问题)

[b]题目:[/b]

数组a[0..n-1],找出i和j使得a[j] - a[i]的值最大。

注意j > i。

要求是时间复杂度O(n),空间复杂度O(1)。
[b]
思路:[/b]
样例数组 11,1,5,8,11,2,3,2,11,5,3
1.先从后到前依次求出相邻2个数的差值,得到 {-2,-6,9,-1,1,-9,3,3,4,-10}
2.问题转化为求差值数组最大和序列,从前至后遍历该数组,保留所有的序列和为正数的和,得到{9,8,9,3,6,10},求最大值为 10

[b]代码:[/b]


static int maxIj(int[] arr){
for(int i=arr.length-1; i > 0;i--){
arr[i] = arr[i] - arr[i-1];
}
arr[0] = 0 ;
int n = 0;
for(int i=1; i<arr.length;i++) {
n = n + arr[i];
if(n > 0 && n > arr[0]) {
arr[0] = n;
} else {
n = 0;
}
}
int maxIj = arr[0];
System.out.println(CollectorUtil.toString(arr));
return maxIj;
}


public static void main(String[] args) {
int[] arr = new int[]{11,3,5,8,11,2,3,2,11,5,3};
int max = maxIj(arr);
System.out.println(max);

System.out.println("---------------");

}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值