基本概念:
1.割点:若删掉某点后,原连通图分裂为多个子图,则称该点为割点。
2.割点集合:在一个无向连通图中,如果有一个顶点集合,删除这个顶点集合,以及这个集合中所有顶点相关联的边以后,原图变成多个连通块,就称这个点集为割点集合。
3.点连通度:最小割点集合中的顶点数。
4.割边(桥):删掉它之后,图必然会分裂为两个或两个以上的子图。
5.割边集合:如果有一个边集合,删除这个边集合以后,原图变成多个连通块,就称这个点集为割边集合。
6.边连通度:一个图的边连通度的定义为,最小割边集合中的边数。
7.缩点:把没有割边的连通子图缩为一个点,此时满足任意两点之间都有两条路径可达。
注:求块<>求缩点。缩点后变成一棵k个点k-1条割边连接成的树。而割点可以存在于多个块中。
8.双连通分量:分为点双连通和边双连通。它的标准定义为:点连通度大于1的图称为点双连通图,边连通度大于1的图称为边双连通图。通俗地讲,满足任意两点之间,能通过两条或两条以上没有任何重复边的路到达的图称为双连通图。无向图G的极大双连通子图称为双连通分量。
树边:为深度优先森林G中的边。如果 结点 v是因为算法对边(u,v)的探索而首先被发现,则(u,v)是一条树边。
后向边:后向边(u,v)是将节点u连接到其在深度优先树中(一个)祖先 结点 v的边。由于有向图中可以有自循环,自循环也可以被认为是后向边。
前向边:是将结点u连接到其在深度优先树中一个后代结点v的边(u,v)。
横向边:至其他所有的边。这些 边 可以连接同一棵深度优先树中的 结点 ,只要其中一个节点不是另外一个 结点 的祖先,也可以连接不同深度优先树中的两个结点
Tarjan算法的应用论述:
1.求强连通分量 、割点、桥、缩点:
对于Tarjan算法中,我们得到了dfn和low两个数组,
low[u]:=min(low[u],dfn[v])——(u,v)为后向边,v不是u的子树;
low[u]:=min(low[u],low[v])——(u,v)为树枝边,v为u的子树;
下边对其进行讨论:
若low[v]>=dfn[u],则u为割点,节点v的子孙和节点u形成一个块。因为这说明v的子孙不能够通过其他边到达u的祖先,这样去掉u之后,图必然分裂为两个子图。这样我们处理点u时,首先递归u的子节点v,然后从v回溯至u后,如果发现上述不等式成立,则找到了一个割点u,并且u和v的子树构成一个块。
若low[v]>dfn[u],则(u,v)为割边。但是实际处理时我们并不这样判断,因为有的图上可能有重边,这样不好处理。我们记录每条边的标号(一条无向边拆成的两条有向边标号相同),记录每个点的父亲到它的边的标号,如果边(u,v)是v的父亲边,就不能用dfn[u]更新low[v]。这样如果遍历完v的所有子节点后,发现low[v]=dfn[v],说明u的父亲边(u,v)为割边。
void tarjan(int x)
{
vis[x]=1;
dfn[x]=low[x]=++num;
for(int i=head[x];i;i=next[i])
if(!vis[ver[i]])
{
p[ver[i]]=edge[i];//记录父亲边
tarjan(ver[i]);
low[x]=min(low[x],low[ver[i]]);
}
else if(p[x]!=edge[i])//不是父亲边才更新
low[x]=min(low[x],dfn[ver[i]]);
if(p[x]&&low[x]==dfn[x])
f[p[x]]=1;//是割边
}
2.求双连通分量以及构造双连通分量:
对于点双连通分支,实际上在求割点的过程中就能顺便把每个点双连通分支求出。建立一个栈,存储当前双连通分支,在搜索图时,每找到一条树枝边或后向边(非横叉边),就把这条边加入栈中。如果遇到某时满足DFS(u)<=Low(v),说明u是一个割点,同时把边从栈顶一个个取出,直到遇到了边(u,v),取出的这些边与其关联的点,组成一个点双连通分支。割点可以属于多个点双连通分支,其余点和每条边只属于且属于一个点双连通分支。
对于边双连通分支,求法更为简单。只需在求出所有的桥以后,把桥边删除,原图变成了多个连通块,则每个连通块就是一个边双连通分支。桥不属于任何一个边双连通分支,其余的边和每个顶点都属于且只属于一个边双连通分支。
一个有桥的连通图,如何把它通过加边变成边双连通图?方法为首先求出所有的桥,然后删除这些桥边,剩下的每个连通块都是一个双连通子图。把每个双连通子图收缩为一个顶点,再把桥边加回来,最后的这个图一定是一棵树,边连通度为1。
统计出树中度为1的节点的个数,即为叶节点的个数,记为leaf。则至少在树上添加(leaf+1)/2条边,就能使树达到边二连通,所以至少添加的边数就是(leaf+1)/2。具体方法为,首先把两个最近公共祖先最远的两个叶节点之间连接一条边,这样可以把这两个点到祖先的路径上所有点收缩到一起,因为一个形成的环一定是双连通的。然后再找两个最近公共祖先最远的两个叶节点,这样一对一对找完,恰好是(leaf+1)/2次,把所有点收缩到了一起。
3.求最近公共祖先(LCA)
在遍历到u时,先tarjan遍历完u的子树,则u和u的子树中的节点的最近公共祖先就是u,并且u和【u的兄弟节点及其子树】的最近公共祖先就是u的父亲。注意到由于我们是按照DFS顺序遍历的,我们可用一个color数组标记,正在访问的染色为1,未访问的标记为0,已经访问到即在【u的子树中的】及【u的已访问的兄弟节点及其子树中的】染色标记为2,这样我们可以通过并查集的不断合并更新,通过find实现以上目标。
注:用链表存储边和问题,可以使得该算法的时间复杂度降低为O(n+m+q),其中n、m、q分别为点、边、问题数目。本文中为了书写简便,采用的是矩阵的存储方式。
function find(x:longint):longint;
begin
if f[x]<>x then f[x]:=find(f[x]);
find:=f[x];
end;
procedure tarjan(u:longint);
begin
f[u]:=u; color[u]:=1;
for i:=1 to n do
if (g[u,i])and(color[i]=0) then//g[u,i]表示u连着i
begin
tarjan(i); f[i]:=u;
end;
for i:=1 to n do
if ((ask[u,i])or(ask[i,u]))and(color[i]=2) then//ask[u,i]表示询问了u,i
begin
lca[u,i]:=find(i); lca[i,u]:=lca[u,i];
end;
color[u]:=2;
end;