设计一个栈含有min()方法的栈,时间复杂度o(1)

原文地址:http://codercareer.blogspot.com/2011/09/no-02-stack-with-function-min.html

No. 02 - Stack with Function min()

Problem: Define a stack, in which we can get its minimum number with a function min. In this stack, the time complexity of min(), push() and pop() are all O(1).

Analysis: Our intuition for this problem might be that we sort all of numbers in the stack when we push a new one, and keep the minimum number on the top of stack. In this way we can get the minimum number in O(1) time. However, we cannot assure that the last number pushed in to container will be the first one to be popped out, so it is no longer a stack.

We may add a new member variable in a stack to keep the minimum number. When we push a new number which is less than the minimum number, we will update it. It sounds good. However, how to get the next minimum number when the current minimum one is popped? Fortunately, we have two solutions for this problem.

Solution 1: With Auxiliary Stack

It is not enough to have only a member variable to keep the minimum number. When the minimum one is popped, we need to get the next minimum one. Therefore, we need to store the next minimum number before push the current minimum one.

How about to store each minimum number (the less value of current minimum number and the number to be pushed) into an auxiliary stack? We may analyze the process to push and pop numbers via some examples (Table 1).

Step
Operation
Data Stack
Auxiliary Stack
Minimum
1
Push 3
3
3
3
2
Push 4
3, 4
3, 3
3
3
Push 2
3, 4, 2
3, 3, 2
2
4
Push 1
3, 4, 2, 1
3, 3, 2, 1
1
5
Pop
3, 4, 2
3, 3, 2
2
6
Pop
3, 4
3, 3
3
7
Push 0
3, 4, 0
3, 3, 0
0
Table 1: The status of data stack, auxiliary stack, minimum value when we push 3, 4, 2, 1, pop twice, and then push 0

At first we push 3 into both data stack and auxiliary stack. Secondly we push 4 into the data stack. We push 3 again into the auxiliary stack because 4 is greater than 3. Thirdly, we continue pushing 2 into the data stack. We update the minimum number as 2 and push it into the auxiliary stack since 2 is less the previous minimum number 3. It is same in the fourth step when we push 1. We also need to update the minimum number and push 1 into the auxiliary stack. We can notice that the top of auxiliary stack is always the minimum number if we push the minimum number into auxiliary stack in each step. 

Whenever we pop a number from data stack, we also pop a number from auxiliary stack. If the minimum number is popped, the next minimum number should be also on the top of auxiliary stack. In the fifth step we pop 1 from the data stack, and we also pop the number on the top of auxiliary (which is 1). We can see that the next minimum number 2 is now on the top of auxiliary stack. If we continue popping from both the data and auxiliary stacks, there are only two numbers 3 and 4 left in the data stack. The minimum number 3 is indeed on the top of the auxiliary stack. Therefore, it demonstrates that our solution is correct.

Now we can develop the required stack. The stack is declared as the following:

template <typename T> class StackWithMin
{
public:
    StackWithMin(void) {}
    virtual ~StackWithMin(void) {}

    T& top(void);

    void push(const T& value);
    void pop(void);

    const T& min(void) const;

private:
    std::stack<T>   m_data;     // data stack, to store numbers
    std::stack<T>   m_min;      // auxiliary stack, to store minimum numbers
};

The function push, pop and min and top can be implemented as:

template <typename T> void StackWithMin<T>::push(const T& value)
{
    // push the new number into data stack
    m_data.push(value);

    // push the new number into auxiliary stack
    // if it is less than the previous minimum number,
    // otherwise push a replication of the minimum number
    if(m_min.size() == 0 || value < m_min.top())
        m_min.push(value);
    else
        m_min.push(m_min.top());
}

template <typename T> void StackWithMin<T>::pop()
{
    assert(m_data.size() > 0 && m_min.size() > 0);

    m_data.pop();
    m_min.pop();
}

template <typename T> const T& StackWithMin<T>::min() const
{
    assert(m_data.size() > 0 && m_min.size() > 0);

    return m_min.top();
}

template <typename T> T& StackWithMin<T>::top()
{
    return m_data.top();
}

The length of auxiliary stack should be  n if we push  n numbers into data stack. Therefore, we need O( n) auxiliary memory for this solution.

Solution 2: Without Auxiliary Stack

The second solution is trickier without an auxiliary stack. We do not always push numbers into data stack directly, but we have some tricky calculation before pushing.

Supposing that we are going to push a number  value into a stack with minimum number  min. If value is greater than or equal to the  min, it is pushed directly into data stack. If it is less than  min, we push 2* value - min, and update  min as  value since a new minimum number is pushed. How about to pop? We pop it directly if the top of data stack (it is denoted as  top) is greater than or equal to  min. Otherwise the number  top is not the real pushed number. The real pushed number is stored is  min. After the current minimum number is popped, we need to restore the previous minimum number, which is 2* min- top.

Now let us demonstrate its correctness of this solution. Since  value is greater than or equal to min, it is pushed into data stack direct without updating  min. Therefore, when we find that the top of data stack is greater than or equal to  min, we can pop directly without updating  min. However, if we find  value is less then  min, we push 2* value- min. We should notice that 2* value- min should be less than  value. Then we update current  min as  value. Therefore, the new top of data stack ( top) is less than the current  min. Therefore, when we find that the top of data stack is less then  min, the real top (real pushed number  value) is stored in  min. After we pop the top of data stack, we have to restore the previous minimum number. Since  top = 2* value-previous  min and  value is current  min, pervious  min is 2*current  min -  top.  

It sounds great. We feel confident to write code now with the correctness demonstration. The following is the sample code:

template <typename T> class StackWithMin
{
public:
    StackWithMin(void) {}
    virtual ~StackWithMin(void) {}

    T& top(void);

    void push(const T& value);
    void pop(void);

    const T& min(void) const;

private:
    std::stack<T>   m_data;     // data stack, to store numbers
    T               m_min;      // minimum number
};

template <typename T> void StackWithMin<T>::push(const T& value)
{
    if(m_data.size() == 0)
    {
        m_data.push(value);
        m_min = value;
    }
    else if(value >= m_min)
    {
        m_data.push(value);
    }
    else
    {
        m_data.push(2 * value - m_min);
        m_min = value;
    }
}

template <typename T> void StackWithMin<T>::pop()
{
    assert(m_data.size() > 0);

    if(m_data.top() < m_min)
        m_min = 2 * m_min - m_data.top();

    m_data.pop();
}

template <typename T> const T& StackWithMin<T>::min() const
{
    assert(m_data.size() > 0);

    return m_min;
}

template <typename T> T& StackWithMin<T>::top()
{
    T top = m_data.top();
    if(top < m_min)
        top = m_min;

    return top;
}

In this solution, we don’t need the O( n) auxiliary stack, so it is more efficient in the perspective of memory utilization than the first solution above. 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值