风力发电机的叶片这么纤细,真的能有效提供动力吗?

大雪已过,冬至将到,风也一天比一天冷啦。小编也是恨不得一步不出门。

cea20fa08e09fd3b4bf33ee78233c98e.png

但是,其实有很多存在在寒风中坚守。没错,那就是:

5460c6bfff8145867f51920bb11e7001.png

不好意思,放错图了,是这个:

56fc11824ff5fe095368f41984e97bb1.png

“因为我就是寒冷的,所以我无畏惧这寒风!春夏秋冬,与风共舞!”

那就是风力发电机!

等等,不知道大家有没有发现一个问题:风力发电机的叶片好细啊!与风车相比,这种直观上的反差,让小编很困惑,这么小的迎风面,真的可以有效提取风能吗?

这个时候可能就有同学要说了,所所,实际上这个叶片,它可一点也不细啊:

a74102439847b59570de3d74136b22e1.png

风力发电机叶片运输过场面 | 图源网络

当然,这里我们想要讨论的是这个比例!相对于这个长度以及叶片扫过的面积而言,这个真的是太细了!

如果你也在此感到困惑,那实际上是跟我一样遇到了一个并不简单的问题:风可以在迎风面上产生直接推力来做功,比如小风车、帆船等,但是叶片这么细显然不是为了利用这种推力,那它是怎么转起来的呢?

越想越感到神奇,为了解开其中的疑惑,小编仔细观察了这个叶片。

424963784865f3cdbabb6705ac600f9a.png

突然发现,这个叶片的形状似曾相识啊!恰好小编了解过一点点点航空航天和空气动力学,对这个形状熟悉无比,这不就是飞机的翼型嘛!是这样的:

028336711735256f7fa72a058e6bab64.png

上方为飞机机翼侧剖图,下方为风力发电机叶片侧剖图 | 图源网络

除了看起来风机叶片的形状要胖一点,很难不让人怀疑这里边的相似性难道说,前面图片展示的风力发电机,获取动力的方式竟和飞机相同?此外,如果按照最自然的想法,为什么不设计成风车的样子,直接利用风压呢?我们来掰扯掰扯这些问题!

1. 飞机升力来源

48bdcea34d04fde31d270edb7ecbdeef.png

8ebd0088039f79cdf14912a66145d78f.png

为了理解以上问题,先要对飞机升力来源作简要介绍。各大平台上,我们都可以看到大家对飞机升力原理的争吵,关于其到底是不是伯努利原理,是不是牛顿第三定律。实际上,这些定性的视角之所以会出现争议,正是因为其在因果关系中的不明和在定量分析上的不便。一个复杂边界条件(比如,机翼的形状可以各种各样,实际场景也可以是风筝,可以是飞机,可以是火箭)下的空气动力学问题,即使可以用一两句原理总结,在具体应用中也逃不开复杂但必不可少的精准模拟计算,不然我们能放心设计出的飞机上天嘛!而机翼升力的定量视角,在科普中谈及不多。为了方便我们对风力发电机的运行情况有所理解,下面我们来略作讨论,给出一个更加简单有效的视角(简单可能会损失一定严格性),同时给出相应的严格定量视角

当机翼高速划过空气,空气对机翼施加了两个方向上的力:飞行方向的阻力(比如空气的摩擦阻力,压差阻力等),以及最重要的升力。前者由发动机的推力平衡,而后者,平衡了重力,使得飞机得以翱翔。

bb52ede66c205bc336d42c93e723673a.png

飞机受力示意图

当机翼划过空气,空气是怎样相对机翼流动的呢?风洞试验可以告诉我们,气体相对机翼的实际流动情况是这样的:

7eb58ef1b6b6098ba8baed5ac44ed811.png

风洞模拟小实验中的流线示意 | 图源网络

也即空气倾向于沿着壁面流动。这样一个过程导致了一个非常重要的结果:空气经过机翼后,将会向下偏折。(你可能会想起一个熟悉的名字:康达效应Coandǎ effect)。

470f4d20aaafe0b3c11d3148c975cdac.png

(你继续说,我在听)

那么一个简单的图像这就来了!不严格地想,既然机翼把空气往下排,就给空气施加了向下的力,相应地,机翼将会受到升力!在较为简单的情形下,这个图像也可以不严格地作为判断是否能产生升力的简易判据,而且很好用。比如风筝这样的薄板为什么会受到升力:

95de9ebd91e4ee8fef6af47db7ad0d9b.png

空气经过平板的流线示意图 | 图自[1]

比如,为什么飞机倒过来也能飞。因为机翼倒过来时,我们同样可以调整角度,在康达效应下,产生向下偏折空气的效果。

从直观的角度讲,“向下偏折空气”的看法还是挺好用的。当然,这并不严格。更严格的流体力学计算表明,导致升力产生的实际上是环量(库塔-儒可夫斯基环量升力定理,即环致升力或者说涡致升力(香蕉球等亦可作此解释)。机翼前行时使得划过的空气形成了涡,相应地机翼上形成了方向相反的附着涡,正是这个涡,使得机翼获得了升力。总有科普文章说“飞机为什么能飞起来?直到今天,科学家仍然没有答案”,怎么可能嘛,不过理解上需要一定门槛倒是可能的,因而难以达成共识。(为了不影响阅读节奏,我们更多的细节放在文末附录,这里只做简要介绍,欢迎大家一起讨论)。

我们来考虑机翼的实际情况,低速翼型通常为圆头尖尾形状,定义机翼的弦与风速的夹角为攻角。

14e64276ee0c39fe18e6e38a7662ec5b.png

攻角示意图 | 图源网络

为了描述产生升力的效率,我们将关于飞行速度以及机翼面积这些明显成正比的项除掉,定义升力系数

其中,称为动压,为机翼特征投影面积(三维)或特征长度(二维)。

在一个比较简单但足够广泛的情形下,通过求解势流方程,可以得到升力系数和攻角有个相当简单的关系:

也即,和攻角成线性关系!这和实验在小攻角下吻合地相当之好(考虑机翼的有限大尺寸,比例系数实际上略低于理论值)。

d50486074d29355d970a84a3b0470d34.png

翼型升力系数随攻角变化关系

但是!细心的读者可能也发现了,攻角不是越大越好。当攻角超过某个值,升力系数急速下降,这是因为康达效应失效,气流将不再贴着机翼

f5e0b850852caa4a7f42fa511fe1559d.png

机翼上方平滑的气流变成了乱流,阻力增大而升力减小,升力系数急转直下!

实际上,机翼在各个速度分布区的形状和原理有很大差别,比如亚音速区、跨音速区、超音速区要解决很不同的问题,内容十分丰富而有趣(有空了写一写)。以上的讨论限定在0.3倍音速以下,足以用于讨论风力发电机的情形。本部分要点总结如下:

1. 如果要寻求一个简单的视角(未必严格),康达效应+“偏折空气”是个很不错的选择。

2. 严格的计算表明,在简单也足够广泛的情形下,环致升力,且升力系数与攻角在小角度成线性关系

3. 当攻角超过一定值时,将会发生失速,升力系数随攻角增大迅速减小。

2.风力发电机的动力原理

59c1a0561b4ec23edf334d6ff28f5ad0.png

e3d6dde8fa94e4be16a486eaf18739fd.png

回归到风力发电机的动力问题,经过以上对飞机翼型和相应升力的讨论,相信大家已经获得了初步的定性认识,也对这细长的叶片看起来和机翼的相似性有了感觉!这种风力发电机的叶片,动力正是来源于类似机翼的升力!没错,如果我们来观察叶片的横截面,将更能感受到这一点:

33be5dd83a3fac4ca0f8a52e78fc7eb6.png

一些风力机叶片侧剖图 | 图自[2]

当然,毕竟适用场景不同,与传统飞机翼型当然是明显有区别的。我们将利用这种升力作为动力来源的发电机成为升力型风力发电机,特点是利用很小的迎风面,就可以提供发电所需的强大动力。有了以上攻角和升力系数概念的铺垫,我们对升力型发电机的效率就可以有简单的计算。容易想到,实际运行的风力发电机,叶片是旋转的,在讨论与空气的相对速度时,要考虑线速度和风速的叠加。

700de4820f5984e6b4eb0f8ac040b5c9.png

转动叶片的攻角分析,要考虑风速和转动线速度的叠级 | 图自[3]

怎么样!对风力发电机的动力来源的理解是不是一下子清晰了很多!

这样设计的风机有诸多好处。从设计而言,这种“细”的特点极大地方便用于设计大型风机,以1500千瓦的风机机组为例,机组叶片大约有35米长(约12层楼高)。

273f70bbbca68da90fb16b07a68516e1.png

当风力发电机上站个人,我们可以感受下风机有多大 | 图源网络

更为显著的优势是接入电网时的稳定性。天气变化无常,风的大小飘忽不定。从功率角度而言,当风较小时,可以通过调整叶片攻角来获得最佳发电功率,风速达到3m/s(清风拂面),就可以让风机进入工作状态,也就是说,虽然细,但是动力仍然足!而若大风天来临,可以看到当风速越来越大,攻角自然会越来越大,叶片将自然进入到失速状态(也可以调整叶片位置)!由此一来,极大地保证了功率的稳定性。对于飞机而言,失速可能是极其危险的,但是对风力机而言,却是一道稳定性的保障。在正常满功率的情况下,一天的发电量就可供15个家庭使用1年。目前的主流风机,正是上述的升力型风机

下面我们来看看大风车的情况。实际上,直接利用风的“推力”来进行做工的情况是有的,我们将其称为阻力型风力发电机。一个很像大风车式的具体实现是荷兰四叶式风车:

e19621347286d2975bcd49e520030691.png

左图为挂起帆的工作状态 | 图源网络

当需要风车运转时,就挂起帆来增大迎风面,就可以相当高效地利用风能啦!荷兰地处欧洲西海岸,气候多风,本身有着丰富的风力资源。而荷兰本身地势低平,他们就想办法围坝排水,与大海争夺土地,风车就成了提水的一个很好的选择,不仅如此,风车还用于磨面发电等用途,为荷兰建设家园建立了不可磨灭的功勋[5]。实际上,阻力型风机的设计多种多样。

874f740fbe8bc96badb3dde6e4cd3678.png

左边为水平轴阻力型风力机,右边为垂直轴阻力型风力机,有较大的迎风面 | 图源网络

但是与升力型风机相比,则有两个明显的缺点:一方面,由于巨大的迎风面,在制造大型风机时有很明显的技术困难;另一方面,输出功率难以保持稳定。当面对极端天气,需要收起巨大的迎风面,来避免损坏,而伸缩式的设计无疑需要消耗更多的资源。

祝愿将来风力机的设计愈加优化,风力资源得到高效利用!

3.更多的问题:叶轮!

aa9c983886cfd38554e21bb589260109.png

edbf1d24f5e1403224e025d412476506.png

叶片在与流体的共舞中,完成了动能和机械能的转换。在这个美妙的过程中,还有更多自然出现而无比吸引人的问题,比如主流的升力型风力发电机为什么采用3叶,而不是2叶或者4叶?

比如,直升机的升力来源有什么不同吗?

121f281bd752f98f595e584be516a917.png

比如,为什么同样是用于提供动力,飞机和轮船发动机的叶片差别为啥如此之大?

f8df619e75aaf873843ed3f3c8433ad5.png

更接近生活的例子,风扇的叶片选取又有什么考虑呢,为什么有的大有的小,有的多有的少?

f0e710f22770ce7ab72ecda59c9296b8.png

各式各样的转动的叶片被联想到一块之后,我们很容易从中发现共同点。实际上,他们有一个共同的广义名字,叫做叶轮。流体与叶轮的相互作用,有无限可能,有无穷魅力。实际应用上我们可以发现叶轮如此广泛,而具体的实现形式因目的原理的不同而变得千差万别。篇幅所限,就留给感兴趣的同学自己探索啦!

最后,放一些好看的图片:

81a93a2dff9636bcedf57bdd02764681.png

垂直轴阻力式风机 | 图源网络

4a77dde2fe71cfbbe44f8e433125631d.png

垂直轴升力型风机 | 图源网络

4ab1a05957943502488894e3f463a235.png

环形机翼,据说可以提高机械强度,降低能耗 | 图源网络

79a081ac1927c0603fcad8548380473c.png

1bbdc91b423c942f055dde16b0b3d251.png

在空气动力学相关教材中均可以找到本部分内容。

我们来考虑机翼的实际情况,低速翼型通常为圆头尖尾形状,当飞机启动时,上下表面的流动在一起的空气由于速度不同,卷曲了起来,随之向后脱出一个类似于点涡的结构,这就是起动涡。按照亥姆霍兹定律,流体中的净环量应该守恒,也即,机翼上将会产生一个相反方向的环流,这个环流支持了:机翼上方的流速将会比机翼下方的流速高。也支持了库塔条件的成立:即气体在尖尾处平滑离开。有了这个条件,我们可以求解一定条件下的势流方程。

317a39e087b645f9e6b36895e7b8bb5a.png

左图:起动涡的产生;右图:空气相对机翼的流动实际上可以看作两部分组成:绕翼型的环流和沿着机翼偏折的层流 | 图自[6]

2e087d2937202b9ca6fe4b6dbcc885ff.png

起动涡演示 | 图自[7]

88c2d64fabc23f1d8619a5e6391bb87f.png

为了便于理解,我们暂不考虑比较复杂的情形,而考虑低速(0.3倍声速内)、机翼长度足够长(这样可以处理为一个二维问题)、机翼形上图所示的薄翼

首先考虑一个简单的情况:不可压缩流体中,对于流体中的圆柱这样的简单情形,解可以表示为均匀流、点源、点汇、偶极子等的叠加。

e414ce2e6f1f64061b6456410aaf2484.png

势流基本解示意图

这时候我们可以非常清晰地计算得到,物体受力大小取决环流以及均匀流的速度。再通过保角变换等方法,可以将圆变换为平面上比较复杂的外形,比如,我们要探讨的翼型。进一步即可得到升力系数关于攻角有个相当简单的关系:

参考:

1.升力的原理.

2.袁尚科. 风力机失速特性研究[D].兰州理工大学,2016.

3.Sanderse B. Aerodynamics of wind turbine wakes: Literature review[M]. ECN, 2009.

4.风力发电机转那么慢,一圈能发多少电.

5.张林初.荷兰的风车[J].世界文化,2008(02):30-31.

6.Kantepalli S R, Janardhan P. Clearing certain misconception in the common explanations of the aerodynamic lift[J]. Preprint, 2018.

7.机翼升力的产生[起动涡和附着涡演示2]

编辑:小范

63645bf47e0688b24f9e781856c670f8.gif

我们是谁:

MatheMagician,中文“数学魔术师”,原指用数学设计魔术的魔术师和数学家。既取其用数学来变魔术的本义,也取像魔术一样玩数学的意思。文章内容涵盖互联网,计算机,统计,算法,NLP等前沿的数学及应用领域;也包括魔术思想,流程鉴赏等魔术内容;以及结合二者的数学魔术分享,还有一些思辨性的谈天说地的随笔。希望你能和我一起,既能感性思考又保持理性思维,享受人生乐趣。欢迎扫码关注和在文末或公众号留言与我交流!

b23c138ec9f544c5d999f3a49e54b38c.gif

08955e140032b69a236b6bd13c04125b.png

2f5cf72812d0b7336e8095cb974d7987.jpeg

扫描二维码

关注更多精彩

牛顿运动定律的谜团(三)——比动量守恒更进一步

魔术《4 Kings 折纸》的三重境界(四)——魔术效果的突破

视错觉与魔术(二)——橡皮筋的奇迹

你真的懂分数吗?(五)——概率与期望

De Bruijin序列与魔术(四)——De Bruijin序列的拓展结果

07086d33f4eb3535622e9f1df6497dbb.gif

点击阅读原文,往期精彩不错过!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值