BZOJ 2809 Apio2012]dispatching 斜堆 可并堆

本文介绍了一种利用斜堆解决忍者派遣问题的方法。该问题要求在每个子树内部通过一定的费用雇佣忍者,并使根节点的忍者领导能力与雇佣人数的乘积最大化。文章详细阐述了斜堆的合并过程以及如何通过斜堆维护费用的大小。

由题意可知,对于每个子树内用一定费用来雇忍者使得根节点的忍者领导能力*雇佣人数最大。

对于每个子树可以用堆来维护费用的大小,每次合并两个子树时,合并两个堆就行了…..所以这里我们需要使用到可并堆。

本人码力较低,代码中使用的的是斜堆,个人认为比较好写,只有一个merge操作,加入新节点只要合并即可,删除节点时只需把根节点的左右儿子合并。每次操作时间复杂度均摊O(nlogn)(QAQ并不会证)。

#include<cstdio>
#include<vector>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;
const int maxn = 200000;
vector<int> f[maxn];
int n,x,tot,rt[maxn],led[maxn]; 
ll c[maxn],m,ans=0;
struct node
{
    int l,r,sz;
    ll sum; 
}a[maxn];
int merge(int x,int y)
{
    if(!x||!y) return x + y; 
    if(c[x]<c[y]) swap(x,y);
    a[x].r=merge(a[x].r,y); 
    swap(a[x].l,a[x].r); return x;
}
void dfs(int x){
    a[x].sum=c[x];a[x].sz=1;rt[x]=x;
    for (int i=0;i<f[x].size();i++)
    {
        int v=f[x][i]; dfs(v);
        a[x].sum+=a[v].sum; a[x].sz+=a[v].sz;
        rt[x]=merge(rt[x],rt[v]);
    }
    while(a[x].sum>m)
    {
        a[x].sum-=c[rt[x]]; a[x].sz--;
        rt[x]=merge(a[rt[x]].l,a[rt[x]].r);
    }
    ans=max(ans,(ll)led[x]*a[x].sz);
}
int main()
{
    freopen("dispatching.in","r",stdin);
    freopen("dispatching.out","w",stdout);
    scanf("%d%lld",&n,&m);
    for(int i=1;i<=n;i++)
    {
        scanf("%d%lld%d",&x,&c[i],&led[i]);
        if(x) f[x].push_back(i);
    }
    dfs(1); 
    printf("%lld\n",ans);
    return 0;
}
/*
5 4
0 3 3
1 3 5
2 2 2
1 2 4
2 3 1
*/
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值