You are given a string S consisting of only lowercase English letters and some queries.
For each query (l,r,k), please output the starting position of the k-th occurence of the substring SlSl+1…Sr in S.
简述一下题意,给定一个字符串还有q组询问。每次询问 l,r 构成的子串 在原串中出现的第k次的位置。
从题面来看应该是一个用到主席树的字符串题,对于字符串的多个子串问题可以考虑后缀数组或后缀自动机。
我们不妨这么考虑 对于每个询问 我们只需要在一段包含询问端点,且该区间heigth 的RMQ 大于查询区间长度 然后我们要其中的sa的第K大。
height 数组的值保证存在相同的字串,用主席树维护sa数组 我们可以把原问题转移为二分区间+主席树第k大
详细的可见代码,虽然写的有些仓促
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cmath>
using namespace std;
const int maxn = 1e5+100;
int T1;
int c[maxn],t1[maxn],t2[maxn],sa[maxn],height[maxn],root[maxn],rk[maxn],cnt,n,m,st[20][maxn],lg[maxn];
char s[maxn];
void build_sa(int m)
{
int *x=t1,*y=t2;
for(int i=0;i<m;i++) c[i]=0;
for(int i=0;i<n;i++) c[x[i]=s[i]]++;
for(int i=0;i<m;i++) c[i]+=c[i-1];
for(int i=n-1;i>=0;i--) sa[--c[x[i]]]=i;
for(int k=1;k<=n;k<<=1)
{
int p=0;
for(int i=n-k;i<n;i++) y[p++]=i;
for(int i=0;i<n;i++) if(sa[i]>=k) y[p++]=sa[i]-k;
for(int i=0;i<m;i++) c[i]=0;
for(int i=0;i<n;i++) c[x[i]]++;
for(int i=0;i<m;i++) c[i]+=c[i-1];
for(int i=n-1;i>=0;i--) sa[--c[x[y[i]]]]=y[i];
swap(x,y);
p=1,x[sa[0]]=0;
for(int i=1;i<n;i++) x[sa[i]]= y[sa[i]]==y[sa[i-1]]&&y[sa[i]+k]==y[sa[i-1]+k] ? p-1 : p++;
if(p>=n) break;
m=p;
}
}
void get_height()
{
int j,k=0;
for(int i=1;i<=n;i++) rk[sa[i]]=i;
for(int i=0;i<n;i++)
{
if(k) k--;
j=sa[rk[i]-1];
while(s[i+k]==s[j+k]) k++;
height[rk[i]]=k;
}
}
struct node
{
int l,r,sum;
};
node T[maxn*40];
void update(int l,int r,int &x,int &y,int pos)
{
x = ++cnt; T[x] = T[y];T[x].sum++;
int mid = (l+r)>>1;
if(l==r) return ;
if(pos<=mid) update(l,mid,T[x].l,T[y].l,pos);
else update(mid+1,r,T[x].r,T[y].r,pos);
}
int query(int l,int r,int x,int y,int k)
{
if(l==r) return l;
int mid = (l+r)>>1;
int sum = T[T[y].l].sum-T[T[x].l].sum;
if(sum>=k) return query(l,mid,T[x].l,T[y].l,k);
else return query(mid+1,r,T[x].r,T[y].r,k-sum);
}
void St()
{
for(int i=1;i<=n;i++) st[0][i] = height[i];
for(int j=1;j<18;j++)
for(int i = n-(1<<j)+1;i > 0;--i)
st[j][i] = min(st[j-1][i],st[j-1][i+(1<<j-1)]);
}
int rmq(int l,int r)
{
int k=log2(r-l+1);
return min(st[k][l],st[k][r-(1<<k)+1]);
}
int main()
{
scanf("%d",&T1);
while(T1--)
{
cnt=0;
memset(T,0,sizeof(T));
memset(st,0,sizeof(st));
memset(root,0,sizeof(root));
scanf("%d%d",&n,&m);
scanf("%s",s);n++;
build_sa(200);n--;
get_height();
St();
for(int i=1;i<=n;i++) update(1,n,root[i],root[i-1],sa[i]+1);
for(int i=1;i<=m;i++)
{
int l,r,k,L=-1,R=-1;
scanf("%d%d%d",&l,&r,&k);
int len = r-l+1,pos=rk[l-1];
l=1,r=pos;
while(l<=r)
{
int mid = (l+r)>>1;
if(rmq(mid,pos)>=len)
{
L = mid;
r = mid-1;
}
else l = mid+1;
}
pos++;
l=pos,r=n;
while(l<=r)
{
int mid = (l+r)>>1;
//cout<<mid<<" "<<pos<<" "<<rmq(pos,mid)<<endl;
if(rmq(pos,mid)>=len)
{
R = mid;
l = mid+1;
}
else r = mid-1;
}
pos--;
//cout<<L<<" "<<R<<endl;
if(L!=-1&&L!=1) L --;
else if(L==-1) L = pos;
if(R==-1) R = pos;
if(R-L+1<k) puts("-1");
else printf("%d\n", query(1,n,root[L-1],root[R],k));
}
}
return 0;
}